IoT- und Event-Streaming-Analytics

Analytics in vernetzen Fabriken

In den Händen digitalaffiner Produzenten sind IoT- und Streaming-Analytics wertvolle Werkzeuge, um Optimierungsprojekte anzustoßen und weiterzuentwickeln. Dabei bieten sich vom Edge Device bis in die Public Cloud passgenaue Anwendungsmöglichkeiten für die Analysesysteme.
Bild: ©metamorworks/istockphoto.com

MES, Sensoren, Edge Devices: Auf einem digital ausgerüsteten Shopfloor entstehen in jeder Sekunde unzählige produktionsrelevante Daten. Doch das Erheben einzelner Zahlen und Werte bringt zunächst keinen Vorteil. Erst wenn alle Informationen zusammengeführt, aggregiert und mit Analytics-Modellen ausgewertet werden, kann das realistische und transparente Bild der Prozesslandschaft entstehen. Diese Übersicht bildet die Grundlage für Optimierungsmaßnahmen. Wer beispielsweise den Zustand seiner Anlage anhand von Sensor- und Betriebsdaten überwacht, erkennt schneller beeinträchtigende Faktoren und kann mit einem Predictive-Maintenance-Konzept ungeplante Produktionsunterbrechungen verhindern.

Anomalien und Muster finden

Auch bei der Produktqualität spielen Daten aus verschiedenen Phasen des Produktionsprozesses eine wichtige Rolle. Die Analyse bestimmter Muster und Anomalien kann drohende Qualitätsprobleme früh erkennbar machen. So können Gegenmaßnahmen rechtzeitig starten. Und schließlich spielen Fertigungsdaten auch eine wichtige Rolle, wenn es darum geht, die gesamte Produktion nachhaltiger zu gestalten, wie das weiter unten angeführte Beispiel zeigt. Doch egal, ob Wartung, Qualität oder Nachhaltigkeit – um ihre jeweiligen Ziele zu erreichen, sollten Unternehmen auf Analytics-Lösungen setzen, die ihnen schnell und effizient genau die Informationen liefern, die sie brauchen.

Maschinennahe IoT-Analytics

Auf dem Shopfloor laufen in der Regel viele Prozesse neben- und miteinander ab. Unternehmen, die ihre Fertigungsprozesse optimieren möchten, müssen sich in einem ersten Schritt darum kümmern, dass die produktionsrelevanten Informationen für die Auswertung gesammelt werden können. Dafür eignen sich klassische Sensoren und sogenannte Edge Devices, die die erhobenen Datenpunkte in ein IoT-Netzwerk senden, in dem die Daten zusammenfließen. Doch nicht alle Daten, die erhoben werden, sind zwangsläufig auch relevant. So wird die Temperatur in einem Härtungsofen während des Brennvorgangs beispielsweise alle fünf Sekunden erhoben, für das Auswertungsmodell der späteren Effizienzanalyse hingegen reicht der stündliche Mittelwert. Um das Speichern und den Transfer unnötig großer Datenmengen zu vermeiden, bietet sich Edge Analytics an. Entsprechende Softwaresysteme aggregieren und strukturieren die Daten direkt dort, wo sie entstehen und verhindern so nicht erforderlichen und leistungsbeeinträchtigenden Datenverkehr.

Wissen, was gerade läuft

Genauso wichtig wie das Auswerten gesammelter Daten-Batches ist die Analyse und Überwachung der aktuell fließenden Informationsströme via Event-Streaming-Analytics. Gerade in Verbindung mit einem IoT-Netzwerk kann die kontinuierliche Analyse von Ereignisströmen nützlich sein. So lassen sich beispielsweise in Echtzeit komplexe Muster identifizieren, wenn etwa die Qualität der aktuellen Charge durch eine versehentlich falsche Eingabe im MES gefährdet ist. Darüber hinaus kann Event-Streaming-Analytics die Qualität von Sensordaten verbessern. Diese sind oft unvollständig, beispielsweise weil aufgrund von Netzwerkproblemen Zeitstempel fehlen oder weil beim Einsatz mehrerer Sensoren Formate und Übertragungszeitpunkte variieren. Eine Reihe von Verfahren, die direkt in die Datenströme eingebettet sind, können Muster erkennen und die Datenqualität dauerhaft erhöhen.

Analytics und die Cloud

Unabhängig, ob fertigungsrelevante Daten in Echtzeit oder retrospektiv analysiert werden, ab einer gewissen Komplexität entfalten Analytics-Anwendungen ihr größtes Potenzial in einer leistungsstarken Betriebsumgebung. Dafür bietet sich der Betrieb in der Cloud an, denn die nutzbaren Ressourcen lassen sich je nach Workload skalieren und sind bedarfsgerecht verfügbar. Noch mehr Möglichkeiten eröffnen sich meist, wenn IoT- und Streaming-Analytics in das Public-Cloud-Ökosystem eines Hyperscalers eingebunden sind, in dem sich eine flexible Infrastruktur, Plattformdienste und ähnliche Services nutzen lassen.

Vom Ziegelwerk zur digital gesteuerten Fabrik

Die österreichische Wienerberger Gruppe ist der weltweit größte Ziegelhersteller und hat sich ambitionierte Nachhaltigkeitsziele gesetzt: Bis Ende 2023 will das Unternehmen seine Emissionen im Vergleich zu 2020 um 15 Prozent senken und bis 2050 komplett klimaneutral arbeiten. Um den Energieverbrauch zu reduzieren, gleichzeitig die Treibhausgasemissionen zu senken und die Produktqualität zu verbessern, nutzt Wienerberger KI und IoT Analytics von SAS, betrieben in der Microsoft Azure Cloud. Ein Leuchtturmprojekt in einer Anlage in Polen dient nun als Vorlage für den Rollout von KI-Systemen in anderen Werken. Wienerberger sammelt Daten aus vielen Quellen, von IoT-Edge-Geräten und Sensoren in den Fabriken über Umweltdaten wie Wetter und Luftfeuchtigkeit bis hin zu stichprobenartigen Produktkontrollen während und nach der Produktion. All diese Daten zeigen Schwankungen auf, die zu sinkender Effizienz und unnötigem Energieverbrauch führen können. Bei Brennöfen zum Trocknen von Ziegeln mit einer Betriebstemperatur von 800°C sollen diese Abweichungen minimiert werden, um optimale, wiederholbare Produktionsprozesse zu etablieren. Zu diesem Zweck unterstützte SAS Wienerberger bei der Entwicklung eines KI-gestützten digitalen Zwillings, der dazu beiträgt, die Ziegelproduktionsprozesse und ihre Schwankungen zu erklären. Dieser Zwilling liefert auch Erkenntnisse zu Maßnahmen, die den Energieverbrauch senken, die Produktqualität verbessern und Emissionen reduzieren können. Nach dem Vorbild der Anlage in Polen will der Hersteller den Einsatz solcher Systeme auf 149 Werke in 23 Ländern ausweiten. n Consultant für die produzierende Industrie in der Global IoT Division von SAS.

www.sas.com

Das könnte Sie auch Interessieren

Bild: Phoenix Contact Deutschland GmbH
Bild: Phoenix Contact Deutschland GmbH
Höhere Verfügbarkeit bei 
geringeren Wartungskosten

Höhere Verfügbarkeit bei geringeren Wartungskosten

Die Krah-Gruppe stellt unter anderem Leistungswiderstände für die Automobilindustrie her. Zur Profinet-basierten Weiterleitung der Sensordaten wurden in der Vergangenheit Steckverbinder-Lösungen genutzt. Da diese in beweglichen Anwendungen wie den Laserschweißautomaten des Herstellers störanfällig sind und schnell verschleißen, kommt nun die kontaktlose und damit verschleißfreie Energie- und Ethernet-Übertragungslösung NearFi zum Einsatz.

Bild: TXOne Networks
Bild: TXOne Networks
CPS Cybersecurity

CPS Cybersecurity

Die Konvergenz von digitaler und physischer Welt hat im Zuge des rasanten technologischen Fortschritts zu einem neuen Bereich geführt, der als cyber-physische Systeme (CPS) bezeichnet wird. Diese Systeme verbinden computergestützte Algorithmen nahtlos mit physischen Prozessen und fördern so eine symbiotische Beziehung zwischen dem Virtuellen und dem Materiellen. Von autonomen Fahrzeugen und Smart Cities bis hin zur Industrieautomatisierung und der Kontrolle kritischer Infrastrukturen haben CPS die Art und Weise, wie wir mit unserer Umwelt interagieren und sie verwalten, revolutioniert.

Bild: Eurogard GmbH
Bild: Eurogard GmbH
Mehrwerte für Fernwartung, Monitoring und Analyse

Mehrwerte für Fernwartung, Monitoring und Analyse

Browser öffnen und einloggen: Schon sind alle verteilten Maschinen sichtbar. Eine integrierte Online-Plattform ermöglicht es Anwendern, Fernwartungsnetze, Maschinen-Monitoring und Datenanalyse vereint an einem Ort zu nutzen. Übersichtlichkeit, ein ausgefeiltes Rechtemanagement, vielfältige Analyse- und Service- Applikationen sollen dabei schnell und unkompliziert für spürbaren Nutzen bei Maschinenbauern und deren Kunden sorgen.

Bild: Engel Austria GmbH/©Fotostudio Eder
Bild: Engel Austria GmbH/©Fotostudio Eder
Smarte Lösung zur Ersatzteilidentifikation von Engel

Smarte Lösung zur Ersatzteilidentifikation von Engel

Mit der smarten Anwendung zur Ersatzteilidentifikation, dem part finder, zeigt das Unternehmen Engel, wie effektive Unterstützung für Kunststoffverarbeiter im Betriebsalltag funktioniert: eine einfache, zeitsparende Lösung, um die Maschinenverfügbarkeit zu verbessern und die Produktionseffizienz zu steigern. Ein Smartphone ist alles, was man dazu braucht.

Bild: IPF Electronic GmbH
Bild: IPF Electronic GmbH
Skalierbares 
Energiemonitoring

Skalierbares Energiemonitoring

Energiekosten sind ein komplexes Thema, mit dem sich nahezu alle Unternehmen inzwischen intensiv konfrontiert sehen. Nachhaltige Energieeinsparungen gelingen jedoch nur, wenn die Ursachen für unnötig hohe Verbräuche bekannt sind. Wie lässt sich nun ein effizientes Energiemonitoring einfach, schnell sowie mit geringen Anfangsinvestitionen und Folgekosten umsetzen? IPF Electronic bietet Starthilfe an.