KI-Funktionen im Antriebsregler
Smarte Servos
Künstliche Intelligenz kann in Antriebssystemen effektiv eingesetzt werden, um vorausschauende Wartungsentscheidungen zu treffen. Diese basieren auf großen Datensätzen, die in Echtzeit in den Servomotoren und -verstärkern erfasst und verarbeitet werden. So wird die Produktion und Verfügbarkeit optimiert, indem präzise Vorhersagen über den Zustand der Anlagen getroffen und diese zum richtigen Zeitpunkt gewartet werden.
Bild: ©gorodenkoff/gettyimages.de

Am effektivsten sind Wartungen, wenn sie vorausschauend und proaktiv erfolgen, also genau dann, wenn sie auch wirklich nötig sind. Mit KI sind Unternehmen in der Lage ihre Wartungsentscheidungen anhand von fundierten Prognosemodellen, Echtzeitdaten und Anlagentrends zu optimieren. Bei der Instandhaltung von Servosystemen bietet eine solche Wartungsstrategie entscheidende Vorteile. Denn während Servomotoren und -verstärker generell sehr langlebig sind, müssen die damit verbundenen mechanischen Teile regelmäßig gewartet werden.

Unternehmen, die Bauteile basierend auf deren tatsächlichem Zustand ersetzen, vermeiden so das Austauschen von Teilen, die noch kaum Verschleißerscheinungen vorweisen. Ist das Gegenteil der Fall und Teile werden stärker abgenutzt als erwartet, kann eine vorausschauende Wartung sogar kostspielige Stillstandzeiten und Schäden an Maschinen vorbeugen.

Servoanwendungen vorausschauend warten

Mit einer zustandsorientierten Wartungsstrategie ist es möglich, so gut wie alle mechanischen Systeme und Komponenten in Echtzeit zu überwachen. Integrierte Sensoren an Servoverstärkern und -motoren liefern dabei einen genauen Überblick über den Zustand der internen Komponenten. Außerdem werden so auch mit den Antrieben verbundene mechanische Bauteile wie Kugelumlaufspindeln, Riemen und Getriebe überwacht, die anfälliger sind und deshalb öfter instandgesetzt oder ersetzt werden müssen. Durch die Übermittlung dieser Informationen an die im Servoverstärker integrierten KI-gestützten Prognosemodelle ist es möglich, Anomalien in den Servosystemen zu identifizieren und potenzielle Probleme frühzeitig zu erkennen.

Mithilfe dieser umsetzbaren Erkenntnisse werden Abnutzungserscheinungen genau zum richtigen Zeitpunkt behoben – bevor es zu Ausfällen kommt, aber nur dann, wenn es auch nötig ist. Um diesen Wartungsansatz erfolgreich umsetzen zu können, müssen große Mengen an gerätespezifischen Daten aus Servoantrieben vorliegen, die in die KI-Simulationen eingespeist werden. Diese bestimmen die Qualität des Modells, sprich dessen Genauigkeit, Empfindlichkeit und Präzision. Für einzelne Benutzer ist es allerdings oft schwierig, die benötigten Informationen zu generieren und zu sammeln. Unternehmen profitieren deshalb enorm von der jahrzehntelangen (datengestützten) Erfahrung eines Automatisierungsanbieters.

Datenanalyse seit 1987

Im Jahr 1987 führte Mitsubishi Electric seinen ersten vollständig digitalen Servoverstärker ein. Seitdem sammelt das Unternehmen Betriebsdaten mit und über seine Servos und deren Peripheriegeräte. Diese Informationen bilden die Grundlage für ein tiefgreifendes Verständnis aller mechanischen Systeme, die von seinen Motoren angetrieben werden. Mithilfe dieses umfassenden Datenspeichers entwickelte das Unternehmen ein Diagnosetool für die vorausschauende Wartung seiner Servomotoren und -verstärker der Melservo MR-J5-Serie.

Diese Lösung nutzt die unternehmenseigene Deep-Learning-KI-Technologie Maisart, um zum Beispiel die Abnutzung mechanischer Komponenten zu erkennen, bevor eine Wartung erforderlich ist. Dieses Konzept zur vorausschauenden Wartung basiert auf Deep Reinforcement Learning. Hierbei handelt es sich um eine KI-Anwendung, die Daten automatisch verarbeitet und so selbstständig lernt, Muster und Anomalien zu erkennen. Anwender können so in kürzester Zeit ein intelligentes Setup implementieren, ohne dass sie über fortgeschrittene Kenntnisse in Programmierung oder maschinellem Lernen verfügen müssen.

Vor allem aber orientiert sich das Wissen an dem individuellen System, in dem die Servos eingesetzt werden. Verschiedene Anwendungen haben alle ihren eigenen optimalen Anlagenzustand. Die KI bestimmt die idealen Betriebsparameter und -bedingungen sowie jegliches Verhalten, das als Anomalie betrachtet werden soll. Ergänzt werden diese Fähigkeiten durch CC-Link IE TSN mit Gigabit-Bandbreite und Echtzeit-Funktionalitäten. Dadurch sind die Servoantriebe in der Lage große Datenmengen für zeitkritische Steuerungsaufgaben sowie weniger flüchtige KI-Analyseinformationen zeitnah und ohne Verzögerungen zu übertragen.

 Künstliche Intelligenz unterstützt nicht nur bei Wartungsentscheidungen, sondern kann auch Produktion und Verfügbarkeit verbessern.
Künstliche Intelligenz unterstützt nicht nur bei Wartungsentscheidungen, sondern kann auch Produktion und Verfügbarkeit verbessern.Bild: ©gorodenkoff/gettyimages.de

Vielseitige Servos

Die Servos sollen allerdings nicht nur die Wartungsaktivitäten vereinfachen sondern sind zudem darauf ausgelegt, die Produktivität und Energieeffizienz in einer Vielzahl von Anwendungen zu erhöhen. So umfassen sie ein breites Portfolio von Motoren mit geringer Baugröße, die eine maximale Geschwindigkeit von 6.700U/min erreichen können. Die Produktpalette umfasst außerdem kompakte Servoverstärker mit einem Drehzahl-/Frequenz-Ansprechverhalten von 3,5kHz und Kommunikationszyklen von 31,25s. Um Energie zu sparen, ist der Verstärker zudem mit einer Rückspeiseeinheit ausgestattet. So werden der Stromverbrauch und die Umweltbelastung von servobasierten Anwendungen reduziert.

Indem sie künstliche Intelligenz mit leistungsstarken und effizienten Komponenten zusammenbringen, können Unternehmen ihre Produktivität demnach erheblich steigern. Unter anderem wird mithilfe zustandsorientierter Überwachung und vorausschauender Wartung die Anlagenverfügbarkeit verbessert. Basierend auf diesen Ansätzen entwickelte der Hersteller seine Servosysteme.

Das könnte Sie auch Interessieren

Bild: Universität Stuttgart IFF / Fraunhofer IPA, Foto: Rainer Bez, Heike Quosdorf
Bild: Universität Stuttgart IFF / Fraunhofer IPA, Foto: Rainer Bez, Heike Quosdorf
OS + KI = Smart Factory?

OS + KI = Smart Factory?

Predictive Maintenance, also die vorausschauende Wartung von Maschinen auf Basis erfasster Prozess- und Anlagendaten, hat sich bei großen Firmen längst etabliert. Sie ermöglicht präventive Problembehebung für die Produktionssysteme von morgen und hilft Betrieben, effizienter zu planen, Ressourcen zu schonen und letztlich wirtschaftlich erfolgreicher zu sein. Dieser Erfolg lässt sich sogar messen.

Bild: ©Gorodenkoff/stock.adobe.com
Bild: ©Gorodenkoff/stock.adobe.com
Mit Managed Services von außen alles im Blick behalten

Mit Managed Services von außen alles im Blick behalten

Daten, Dateien, Dokumente, Prozesse – in Unternehmen laufen all diese Dinge seit Langem digital. Fast schon vergessen sind die Zeiten, in denen Akten und Schränke ganze Räume füllten, um Wissen und Informationen aufzubewahren. „Die digitale Transformation führt aber in vielen Unternehmen immer noch zur Fehlannahme, dass die neuen Formate keinen Platz benötigen, da sie ja haptisch nicht mehr greifbar sind“, erklärt Niko Neskovic, Geschäftsführer von NetComData, und erläutert: „Das ist allerdings ein Irrglaube, der leider noch immer zu oft mit den fatalen Folgen eines Systemausfalls einhergeht. Auch digitale Systeme brauchen regelmäßige Pflege und auch hier muss ausreichend Platz zur Verfügung stehen.“