Künstliche Intelligenz auf Werksebene

Betriebsstörungen in der Glaskugel vorhersehen

Produzierende Unternehmen könnten künftig die Analyse-Funktionen ihrer Fertigungssoftware etwa dazu nutzen, Ausschuss und Arbeitsplatzstörungen vorherzusagen, um dies mit den passenden Gegenmaßnahmen zu verhindern. Ein solches KI-getriebenes Predictive-Analytics-System wird gerade in einem praxisnahen Forschungsprojekt weiterentwickelt.
Bild: ©goodluz/stock.adobe.com

Transparenz ist der elementare Bestandteil einer effizienten Fertigungsumgebung. Sie durchleuchtet vergangene und aktuelle Abläufe, zeigt Potenziale auf und hilft Industriebetrieben dadurch bei der Optimierung ihrer Wertschöpfung. Mit der Digitalisierungswelle in die Fertigung steigen allerdings auch die Anforderungen an eine effiziente Verarbeitung der Datenmengen, die daraus gewonnen werden – viele davon idealerweise in Echtzeit. Diese Datenmengen in Kombination mit neuen Erkenntnissen rund um die Themen ‚künstliche Intelligenz‘ und ‚Machine Learning‘ erlauben zunehmend den viel zitierten Blick in die Glaskugel mit entsprechenden zuverlässigen Vorhersagen.

Data Analytics in der Produktion

Eine Funktionalität, die zeitgemäße MES-Lösungen schon lange bieten, bekommt im Zuge der oben erwähnten Digitalisierungswelle und der Etablierung des IIoT eine ganz neue Bedeutung: Predictive Maintenance, die vorausschauende Instandhaltung. Das IIoT liefert datentechnisch ein sehr genaues Bild des Ist-Zustandes. Algorithmen, Big-Data-Anwendungen und KI erkennen gewisse Muster in diesen Informationen. So kommt es zu Vorhersagen über zu erwartende Zustände und Trends. Laut Deloitte erzeugen Geschäftstätigkeiten also die Daten, „die durch Analyse wieder zu handlungsrelevanten Erkenntnissen, neuen Entscheidungen und vielleicht sogar zu neuen Geschäftstätigkeiten“ führen können.

Aussagekräftige MES-Daten

Der im Predictive-Analytics-Forschungsprojekt involvierte Universitätsprofessor Dr. Alfred Taudes, Wirtschaftsuniversität Wien, Department für Informationsverarbeitung und Prozessmanagement, Institut für Produktionsmanagement, kennt die Stärken von Predictive Analytics: „Mittels Predictive Analytics können Fertigungsunternehmen heute durch Sensoren generierten Datenmengen sinnvoll für eine bessere Planung einsetzen. Eine genauere Prognose des Ausschussanteils etwa führt zu verbesserter Kapazitätsauslastung, Termintreue und geringeren Lagerständen.“ Wie MES-Daten sinnvoll im Rahmen von Predictive Analytics eingesetzt werden können, beschreibt Taudes so: „Die in der Vergangenheit im MES erfolgten Aufzeichnungen zu Ausschuss, Maschinenausfall, Störungen und Produktqualität im jeweiligen Umfeld, etwa Maschine, Personal, Umwelt, Material, Auftrag und Zeit, geben unter Einsatz geeigneter Methoden Aufschluss über Konstellationen, in denen diese Probleme gehäuft auftreten. Diese Muster werden bei der Vorhersage der Qualitätsmetriken bei künftigen Planungen angewandt.“ Die meisten Daten seien also bereits vorhanden, so Taudes weiter, es fehle lediglich an einer passenden Analyse und bedienergerechten Integration in den Planungsprozess. Neben den Prozessdaten könnten beim Qualitätsmangement auch textuelle oder visuelle Informationen relevant sein. „Hier stehen wir erst am Anfang der Analyse, insbesondere die Integration heterogener Datenbestände ist ein aktives Forschungsgebiet.“

Ausschüsse und Arbeitsplatzstörungen

Thomas Krainz vom MES-Hersteller Industrie Informatik ergänzt: „Erfolgsentscheidend ist am Ende die Anpassung all dieser Technologien und Funktionen an die jeweilige Datensituation und vor allem die Erwartungshaltung der Kunden. Künstliche Intelligenz und Predictive Analytics sind keine Wunderheiler. Sie sind weder besser noch intelligenter in ihren Aufgaben als ein Mensch. Ihr Vorteil liegt in der Nachbildung von menschlichem Know-how – und das bei hoher Geschwindigkeit und außerdem rund um die Uhr. Daraus leiten sich viele Möglichkeiten ab.“ Konkret gemeint sind damit Prognosen zu relativen Ausschüssen und Arbeitsplatzstörungen in Folgeschichten sowie zu den verschiedenen Qualitätsstatus nach Fertigungsschritten. Alleine mit diesen Informationen könne man verborgene Einsparungspotenziale aufdecken und die Effizienz am Shopfloor massiv optimieren, so Krainz.

www.industrieinformatik.com

Predictive Analytics

Predictive Analytics verwendet historische Daten, um zukünftige Ereignisse vorherzusagen. Im Allgemeinen werden historische Daten verwendet, um ein mathematisches Modell zu erstellen, das wichtige Trends erfasst. Dieses prädiktive Modell wird dann auf aktuelle Daten angewendet, um vorherzusagen, was als Nächstes passieren wird, oder um Aktionen vorzuschlagen, mit denen optimale Ergebnisse erreicht werden können. Predictive Analytics hat in den letzten Jahren viel Aufmerksamkeit erhalten, da bei unterstützenden Technologien große Fortschritte zu verzeichnen waren, vor allem in den Bereichen von Big Data und Machine Learning. Predictive Analytics ist eine Teildisziplin und eines der Fundamente der Business Analytics in dem Bereich des Data Minings, der sich mit der Vorhersage zukünftiger Entwicklungen befasst. Vor allem in Bezug auf Big Data ist diese Methode inzwischen unerlässlich geworden, denn sie bietet eine probate Technik, um große Datenbestände zu analysieren und entsprechende Schlussfolgerungen zu ziehen.

Quelle: Wikipedia

Das könnte Sie auch Interessieren

Bild: Phoenix Contact Deutschland GmbH
Bild: Phoenix Contact Deutschland GmbH
Höhere Verfügbarkeit bei 
geringeren Wartungskosten

Höhere Verfügbarkeit bei geringeren Wartungskosten

Die Krah-Gruppe stellt unter anderem Leistungswiderstände für die Automobilindustrie her. Zur Profinet-basierten Weiterleitung der Sensordaten wurden in der Vergangenheit Steckverbinder-Lösungen genutzt. Da diese in beweglichen Anwendungen wie den Laserschweißautomaten des Herstellers störanfällig sind und schnell verschleißen, kommt nun die kontaktlose und damit verschleißfreie Energie- und Ethernet-Übertragungslösung NearFi zum Einsatz.

Bild: TXOne Networks
Bild: TXOne Networks
CPS Cybersecurity

CPS Cybersecurity

Die Konvergenz von digitaler und physischer Welt hat im Zuge des rasanten technologischen Fortschritts zu einem neuen Bereich geführt, der als cyber-physische Systeme (CPS) bezeichnet wird. Diese Systeme verbinden computergestützte Algorithmen nahtlos mit physischen Prozessen und fördern so eine symbiotische Beziehung zwischen dem Virtuellen und dem Materiellen. Von autonomen Fahrzeugen und Smart Cities bis hin zur Industrieautomatisierung und der Kontrolle kritischer Infrastrukturen haben CPS die Art und Weise, wie wir mit unserer Umwelt interagieren und sie verwalten, revolutioniert.

Bild: Eurogard GmbH
Bild: Eurogard GmbH
Mehrwerte für Fernwartung, Monitoring und Analyse

Mehrwerte für Fernwartung, Monitoring und Analyse

Browser öffnen und einloggen: Schon sind alle verteilten Maschinen sichtbar. Eine integrierte Online-Plattform ermöglicht es Anwendern, Fernwartungsnetze, Maschinen-Monitoring und Datenanalyse vereint an einem Ort zu nutzen. Übersichtlichkeit, ein ausgefeiltes Rechtemanagement, vielfältige Analyse- und Service- Applikationen sollen dabei schnell und unkompliziert für spürbaren Nutzen bei Maschinenbauern und deren Kunden sorgen.

Bild: Engel Austria GmbH/©Fotostudio Eder
Bild: Engel Austria GmbH/©Fotostudio Eder
Smarte Lösung zur Ersatzteilidentifikation von Engel

Smarte Lösung zur Ersatzteilidentifikation von Engel

Mit der smarten Anwendung zur Ersatzteilidentifikation, dem part finder, zeigt das Unternehmen Engel, wie effektive Unterstützung für Kunststoffverarbeiter im Betriebsalltag funktioniert: eine einfache, zeitsparende Lösung, um die Maschinenverfügbarkeit zu verbessern und die Produktionseffizienz zu steigern. Ein Smartphone ist alles, was man dazu braucht.

Bild: IPF Electronic GmbH
Bild: IPF Electronic GmbH
Skalierbares 
Energiemonitoring

Skalierbares Energiemonitoring

Energiekosten sind ein komplexes Thema, mit dem sich nahezu alle Unternehmen inzwischen intensiv konfrontiert sehen. Nachhaltige Energieeinsparungen gelingen jedoch nur, wenn die Ursachen für unnötig hohe Verbräuche bekannt sind. Wie lässt sich nun ein effizientes Energiemonitoring einfach, schnell sowie mit geringen Anfangsinvestitionen und Folgekosten umsetzen? IPF Electronic bietet Starthilfe an.