Künstliche Intelligenz auf Werksebene
Betriebsstörungen in der Glaskugel vorhersehen
Produzierende Unternehmen könnten künftig die Analyse-Funktionen ihrer Fertigungssoftware etwa dazu nutzen, Ausschuss und Arbeitsplatzstörungen vorherzusagen, um dies mit den passenden Gegenmaßnahmen zu verhindern. Ein solches KI-getriebenes Predictive-Analytics-System wird gerade in einem praxisnahen Forschungsprojekt weiterentwickelt.
Bild: ©goodluz/stock.adobe.com

Transparenz ist der elementare Bestandteil einer effizienten Fertigungsumgebung. Sie durchleuchtet vergangene und aktuelle Abläufe, zeigt Potenziale auf und hilft Industriebetrieben dadurch bei der Optimierung ihrer Wertschöpfung. Mit der Digitalisierungswelle in die Fertigung steigen allerdings auch die Anforderungen an eine effiziente Verarbeitung der Datenmengen, die daraus gewonnen werden – viele davon idealerweise in Echtzeit. Diese Datenmengen in Kombination mit neuen Erkenntnissen rund um die Themen ‚künstliche Intelligenz‘ und ‚Machine Learning‘ erlauben zunehmend den viel zitierten Blick in die Glaskugel mit entsprechenden zuverlässigen Vorhersagen.

Data Analytics in der Produktion

Eine Funktionalität, die zeitgemäße MES-Lösungen schon lange bieten, bekommt im Zuge der oben erwähnten Digitalisierungswelle und der Etablierung des IIoT eine ganz neue Bedeutung: Predictive Maintenance, die vorausschauende Instandhaltung. Das IIoT liefert datentechnisch ein sehr genaues Bild des Ist-Zustandes. Algorithmen, Big-Data-Anwendungen und KI erkennen gewisse Muster in diesen Informationen. So kommt es zu Vorhersagen über zu erwartende Zustände und Trends. Laut Deloitte erzeugen Geschäftstätigkeiten also die Daten, „die durch Analyse wieder zu handlungsrelevanten Erkenntnissen, neuen Entscheidungen und vielleicht sogar zu neuen Geschäftstätigkeiten“ führen können.

Aussagekräftige MES-Daten

Der im Predictive-Analytics-Forschungsprojekt involvierte Universitätsprofessor Dr. Alfred Taudes, Wirtschaftsuniversität Wien, Department für Informationsverarbeitung und Prozessmanagement, Institut für Produktionsmanagement, kennt die Stärken von Predictive Analytics: „Mittels Predictive Analytics können Fertigungsunternehmen heute durch Sensoren generierten Datenmengen sinnvoll für eine bessere Planung einsetzen. Eine genauere Prognose des Ausschussanteils etwa führt zu verbesserter Kapazitätsauslastung, Termintreue und geringeren Lagerständen.“ Wie MES-Daten sinnvoll im Rahmen von Predictive Analytics eingesetzt werden können, beschreibt Taudes so: „Die in der Vergangenheit im MES erfolgten Aufzeichnungen zu Ausschuss, Maschinenausfall, Störungen und Produktqualität im jeweiligen Umfeld, etwa Maschine, Personal, Umwelt, Material, Auftrag und Zeit, geben unter Einsatz geeigneter Methoden Aufschluss über Konstellationen, in denen diese Probleme gehäuft auftreten. Diese Muster werden bei der Vorhersage der Qualitätsmetriken bei künftigen Planungen angewandt.“ Die meisten Daten seien also bereits vorhanden, so Taudes weiter, es fehle lediglich an einer passenden Analyse und bedienergerechten Integration in den Planungsprozess. Neben den Prozessdaten könnten beim Qualitätsmangement auch textuelle oder visuelle Informationen relevant sein. „Hier stehen wir erst am Anfang der Analyse, insbesondere die Integration heterogener Datenbestände ist ein aktives Forschungsgebiet.“

Ausschüsse und Arbeitsplatzstörungen

Thomas Krainz vom MES-Hersteller Industrie Informatik ergänzt: „Erfolgsentscheidend ist am Ende die Anpassung all dieser Technologien und Funktionen an die jeweilige Datensituation und vor allem die Erwartungshaltung der Kunden. Künstliche Intelligenz und Predictive Analytics sind keine Wunderheiler. Sie sind weder besser noch intelligenter in ihren Aufgaben als ein Mensch. Ihr Vorteil liegt in der Nachbildung von menschlichem Know-how – und das bei hoher Geschwindigkeit und außerdem rund um die Uhr. Daraus leiten sich viele Möglichkeiten ab.“ Konkret gemeint sind damit Prognosen zu relativen Ausschüssen und Arbeitsplatzstörungen in Folgeschichten sowie zu den verschiedenen Qualitätsstatus nach Fertigungsschritten. Alleine mit diesen Informationen könne man verborgene Einsparungspotenziale aufdecken und die Effizienz am Shopfloor massiv optimieren, so Krainz.

www.industrieinformatik.com

Predictive Analytics

Predictive Analytics verwendet historische Daten, um zukünftige Ereignisse vorherzusagen. Im Allgemeinen werden historische Daten verwendet, um ein mathematisches Modell zu erstellen, das wichtige Trends erfasst. Dieses prädiktive Modell wird dann auf aktuelle Daten angewendet, um vorherzusagen, was als Nächstes passieren wird, oder um Aktionen vorzuschlagen, mit denen optimale Ergebnisse erreicht werden können. Predictive Analytics hat in den letzten Jahren viel Aufmerksamkeit erhalten, da bei unterstützenden Technologien große Fortschritte zu verzeichnen waren, vor allem in den Bereichen von Big Data und Machine Learning. Predictive Analytics ist eine Teildisziplin und eines der Fundamente der Business Analytics in dem Bereich des Data Minings, der sich mit der Vorhersage zukünftiger Entwicklungen befasst. Vor allem in Bezug auf Big Data ist diese Methode inzwischen unerlässlich geworden, denn sie bietet eine probate Technik, um große Datenbestände zu analysieren und entsprechende Schlussfolgerungen zu ziehen.

Quelle: Wikipedia

Das könnte Sie auch Interessieren

Bild: RUD Ketten Rieger & Dietz GmbH u. Co. KG
Bild: RUD Ketten Rieger & Dietz GmbH u. Co. KG
Analyse-Tool für smarte Prozesssicherheit

Analyse-Tool für smarte Prozesssicherheit

Einfaches Anlagenmonitoring: Mit dem RUD Cockpit von RUD Ketten Rieger & Dietz können Betreiber von Industrieanlagen ihre Förderer jederzeit im Blick behalten. Das Analyse-Tool erfasst Echtzeitdaten der Förderanlagen und soll damit die vorausschauende Wartung verbessern. In einem visuellen Dashboard können gefährliche Betriebsbedingungen, wie unzulässige Hitze oder auch ungewöhnliche Geschwindigkeiten, schnell erkannt werden, bevor es zu einem erhöhten Verschleiß der Komponenten oder zu einem Stillstand der Anlage kommt. Zudem ist das Tool auf verschiedenen mobilen Endgeräten verfügbar.

Bild: @-yet GmbH
Bild: @-yet GmbH
Die Cloud richtig absichern

Die Cloud richtig absichern

Während der Pandemie wurde in vielen Unternehmen der Betrieb kurzfristig auf Cloud-Anwendungen umgestellt und Störungsbehebung oder Installationen per Fernwartung durchgeführt. Aufgrund des unerwarteten Zeitdrucks wurden die hierfür notwendigen Entscheidungen vielfach überstürzt getroffen und Risiko-Bewertung vernachlässigt. Nun sollten die neu eingeführten Konzepte hinsichtlich der IT-Sicherheit genauer analysiert werden.

Bild: Eplan GmbH & Co. KG
Bild: Eplan GmbH & Co. KG
Schaltschrank in 3D: Mehr Übersicht für Service und Instandhaltung

Schaltschrank in 3D: Mehr Übersicht für Service und Instandhaltung

Ein Viewer ist im Konstruktionsalltag nichts Besonderes. Wenn er aber AR-Funktionalität integriert und damit einen Schaltschrank in die virtuelle Welt ‚hineinplatziert‘, dann ist das schon außergewöhnlich. Mit der neuen Version von Eplan eView Free ist die AR-Funktion jetzt direkt über eine 3D-Visualisierung zugänglich. Zudem soll die neue 3D-Engine für mehr Übersicht in Service und Instandhaltung sorgen: Einzelne Bereiche eines Schaltschranks können dadurch ein- und ausblendendet werden – und der Schrank kann frei im Raum gedreht werden, was die Navigation im Projekt einfacher machen soll.

Bild: Pilz GmbH & Co. KG
Bild: Pilz GmbH & Co. KG
Anlagen safe und secure warten

Anlagen safe und secure warten

Für die sichere Durchführung von Wartungsarbeiten hat Pilz die neue Wartungssicherung Key-in-pocket im Programm. Sie soll vor dem unerlaubten Wiederanlauf einer Maschine schützen. Die digitale Wartungssicherung basierend auf dem Zugangsberechtigungssystem PITreader gewährleistet Safety und Industrial Security: Nur autorisierte Personen gelangen während des Wartungsprozesses an die Maschine oder Anlage – Manipulation und Fehlbedienung ausgeschlossen.