Mit AIaaS Einstiegshürden senken
KI als Service nutzen
KI-Projekte sind häufig kostenintensiv und verlangen umfangreiche Planung. Das macht sie oft nur für größere Unternehmen attraktiv. Mit cloudbasierter AI as a Service (AIaaS) können auch Mittelständler von künstlicher Intelligenz (KI) profitieren - sofern die Voraussetzungen passen.
Bild: ©metamorworks/stock.adobe.com

Bis vor wenigen Jahren war die KI-Entwicklung am ehesten mit einer Individualprogrammierung zu vergleichen, für die Unternehmen oft erst KI-Experten finden oder ausbilden mussten. Projekte wurden langwierig und teuer. AI as a Service (AIaaS) kann diese Einstiegshürden senken, da Teilprobleme bereits Anbieter-seitig gelöst wurden.

Ohne Knowhow geht es nicht

Zwar wird auch bei einer AIaaS-Lösung internes KI-Knowhow benötigt. Allerdings ist es durch den Einsatz von Low Code Tools nicht notwendig, selbst zu programmieren. Ebenso ist die Implementierung über Programmschnittstellen bereits vorhanden. Die KI muss weder trainiert noch programmiert werden. Der größte Teil der KI liegt standardisiert vor. Der Zeitaufwand besteht darin, die KI an die Anforderungen und Ziele des Anwender-Unternehmens anzupassen. Support, Wartung und Instandhaltung sind durch Service Level Agreements abgedeckt. Die Abrechnung erfolgt nach der Nutzungsintensität.

Die Grenzen kennen

Bei unrealistischen Erwartungen an KI-Systeme können Projekte früh erlahmen und so vermeidbare Kosten entstehen. Deren Grenzen zu kennen, kann insbesondere bei Projekten zentral sein, in denen Interessenvertreter mit unterschiedlichen Erwartungen involviert sind. Ebenso wichtig ist es, den Mehrwert für das Unternehmen herauszufinden, der durch den KI-Einsatz generiert werden soll. Hier werden sowohl betriebswirtschaftliche als auch strategische Ansätze evaluiert. Die verschiedenen Möglichkeiten sollten Unternehmen dann priorisieren und ’step by step‘ angehen.

Viele Stellschrauben

Ein Unternehmen bietet viele Stellschrauben und Schnittstellen, an denen KI unterstützen kann. Hier sind eine Datenprüfung sowie eine Bedarfsanalyse gefragt, aber auch ein Blick über den Tellerrand. AIaaS kann zum einen monotone Aufgaben übernehmen, etwa Fotos verschlagworten, Kundenbefragungen auswerten oder Dokumente inhaltlich kategorisieren. Andererseits gibt es auch weniger bekannte Aufgaben. Während der Pandemie hat sich künstliche Intelligenz etwa bei der automatisierten Personenzählung bewährt. Darüber hinaus spielen KI-Lösungen auch in der Qualitätskontrolle ihre Stärken aus. Beim Einsatz von AIaaS ist also durchaus Kreativität gefragt. Um individuelle Einsatzmöglichkeiten zu ermitteln, ist ein analytischer und innovativer Ansatz notwendig, um das Potential auszuschöpfen.

Daten müssen passen

Qualitativ hochwertige und gut strukturierte Daten sind das A und O für jedes KI-Projekt. Hinzu kommen Faktoren wie die Algorithmenauswahl und Datenstrategie. Dafür ist eine Datenverwaltung und -analyse notwendig sowie eine Unternehmenskultur, die eine Ermittlung von Anwendungsfällen begünstigt. Auch Datenarchitektur, organisatorische Aufstellung und Daten-Governance sind bedeutsam. Wichtig ist auch die Auswahl der Eingabedaten und eine Analyse der Ergebnisse. Damit KI die Arbeitsabläufe in einem Unternehmen unterstützen kann, sollten Unternehmen vor der AIaaS-Nutzung immer die relevanten Daten prüfen. Ausgangspunkt ist dabei die spezifische Situation des Unternehmens sowie der Business Case. So entstehen maßgeschneiderte Lösungen, die KI an geeigneten Stellen mit guten Ergebnissen einsetzen. Die verantwortlichen Teams in den Unternehmen sollten hier rechtzeitig Knowhow und vor allem Erfahrung beim Gestalten von KI-Projekten aufbauen oder extern hinzuziehen.

Das könnte Sie auch Interessieren

Bild: Universität Stuttgart IFF / Fraunhofer IPA, Foto: Rainer Bez, Heike Quosdorf
Bild: Universität Stuttgart IFF / Fraunhofer IPA, Foto: Rainer Bez, Heike Quosdorf
OS + KI = Smart Factory?

OS + KI = Smart Factory?

Predictive Maintenance, also die vorausschauende Wartung von Maschinen auf Basis erfasster Prozess- und Anlagendaten, hat sich bei großen Firmen längst etabliert. Sie ermöglicht präventive Problembehebung für die Produktionssysteme von morgen und hilft Betrieben, effizienter zu planen, Ressourcen zu schonen und letztlich wirtschaftlich erfolgreicher zu sein. Dieser Erfolg lässt sich sogar messen.

Bild: ©Gorodenkoff/stock.adobe.com
Bild: ©Gorodenkoff/stock.adobe.com
Mit Managed Services von außen alles im Blick behalten

Mit Managed Services von außen alles im Blick behalten

Daten, Dateien, Dokumente, Prozesse – in Unternehmen laufen all diese Dinge seit Langem digital. Fast schon vergessen sind die Zeiten, in denen Akten und Schränke ganze Räume füllten, um Wissen und Informationen aufzubewahren. „Die digitale Transformation führt aber in vielen Unternehmen immer noch zur Fehlannahme, dass die neuen Formate keinen Platz benötigen, da sie ja haptisch nicht mehr greifbar sind“, erklärt Niko Neskovic, Geschäftsführer von NetComData, und erläutert: „Das ist allerdings ein Irrglaube, der leider noch immer zu oft mit den fatalen Folgen eines Systemausfalls einhergeht. Auch digitale Systeme brauchen regelmäßige Pflege und auch hier muss ausreichend Platz zur Verfügung stehen.“