Predictive Asset Management
Anlagen KI-gestützt am Laufen halten
Die Anlagenverfügbarkeit soll hoch, die Wartungsdauer niedrig sein - ein Balanceakt. Mit dem KI-Framework Deep Qualicision gibt es dafür ein System, das bei Entscheidungen und Optimierungen unterstützt und von KI-Experten und Prozessverantwortlichen bedienbar ist.
Wirkungs- und Beziehungsmatrix - KI-gelernte Qualitative Labels mit Zusammenhängen
Wirkungs- und Beziehungsmatrix – KI-gelernte Qualitative Labels mit ZusammenhängenBild: PSI FLS Fuzzy Logik & Neuro Systeme GmbH

Um unvorhergesehenen Maschinenstillständen vorzubeugen, setzen Unternehmen auf vorausschauende Wartungs- und Instandhaltungsstrategien. Die Gratwanderung zwischen Wartungsaufwand und Verfügbarkeit wird mit der Zahl der Anlagen und Einflussfaktoren jedoch schwieriger. Insbesondere Betreiber von Anlagenverbänden verfolgen daher oft eine Predictive Asset Management-Strategie, deren Kern darin besteht, auf Basis der Kenntnis und Bewertung des Zustands von Maschinen Wartungs- und Instandhaltungsentscheidungen zu treffen. Hier können technische Daten wie Druck, Temperatur und Arbeitsstunden seit der letzten Wartung einfließen, aber auch betriebswirtschaftliche Aspekte wie Termintreue, Auslastung der Ressourcen, Abschreibungszustand oder Modernisierungsbedarf.

IT reduziert Komplexität

Aufgrund der Menge an kombinierbaren Einflussfaktoren eignen sich für die Datenverarbeitung auf diesem Feld Verfahren der künstlichen Intelligenz (KI), etwa maschinelles Lernen (ML). Das Deep-Qualicision-KI-Framework der PSI FLS Fuzzy Logik & Neuro Systeme etwa hat solche Funktionen implementiert und ermöglicht zudem über eine bereitgestellte Erklärebene die Systembedienung auch für Nutzer ohne KI-Kenntnisse. Die Software kombiniert dazu eine selbstlernende Entscheidungsunterstützung und -optimierung mit KI-Prognoseverfahren. Zunächst beobachtet die Software, in welchen Temperaturbereichen bspw. die Maschine Sensordaten bereitstellt, die auf die Notwendigkeit einer Wartung hindeuten. Dazu benutzt das System eine sogenannte Labeling-Funktion, mit der eine Unterscheidung zwischen positiven, also eher erwünschten Maschinenzuständen und negativen Wertebereichen, also unerwünschten Maschinenzuständen möglich ist. Die zugrunde liegenden Sensordaten werden dementsprechend mit positiven und negativen Konnotationen – den Labels – versehen. Die Software stellt zwischen den gelabelten Datensätzen Zusammenhänge her und erkennt darin Muster, aus denen sie kurz-, mittel- oder langfristige Wartungsempfehlungen ableitet. Durch die – einmal festgelegten – Labeling-Funktionen lassen sich beinahe beliebige Signalverläufe verarbeiten und automatisch labeln. Die Software visualisiert diese gelabelten Daten in Form von Wirkungs- und Beziehungsmatrizen.

KI-Entscheidungen verstehen

In der oberen Abbildung ist zu erkennen, wie für eine Maschine die Empfehlung für eine dringende Wartung ausgegeben wird. Diese errgänzt eine Erklärung, aus welchen Faktoren heraus dieser Ratschlag entstand: Aus der Messung der Vibrationsdaten sowie des definierten dynamischen Wartungsintervalls. So können die Menschen selbst ohne KI-Kenntnisse fundiert entscheiden, ob sie dem Rat folgen oder nicht. Zudem stehen ihnen Schieberegler zur Verfügung, über die sie die Sensitivität der Labels justieren können. Der hinterlegte Lernalgorithmus leitet wiederum sowohl aus den Bestätigungen und Verneinungen als auch aus den Anpassungen über die Regler weitere Muster ab und lernt über ein im KI-Framework integriertes ML-Verfahren dazu.

Qualitatives Labeln von Maschinendaten beim Predictive Maintenance – Bild: PSI FLS Fuzzy Logik & Neuro Systeme GmbH

Predictive Maintenance skalieren

Der Übergang von der vorausschauenden Instandhaltung einer einzelnen Maschine zu einem Predictive Asset Management für Maschinen- und Anlagenparks erfolgt durch zusätzliche Einflussgrößen. Diese können mit den gleichen Systematiken behandelt werden. Das Prinzip des qualitativen Labelns bleibt grundsätzlich gleich. Lediglich die Skalierung ändert sich, etwa bei den Datenbanken dahinter. Ähnliches gilt für die im Hintergrund einsetzbare Lern-Logik: Sie kann Zusammenhänge und Zielkonflikte zwischen Key Performance Indicators (KPIs) und Systematiken auch auf hoher Skalierungsebene erlernen. Die Bedienbarkeit und die Managementfunktionen des Systems bleiben ebenfalls unverändert. So lassen sich Schritt für Schritt größere Systemverbünde aufbauen.

Flexibel einsetzbare KI

Das ML-Tool Deep Qualicision ist Teil eines KI-Frameworks, das selbstständig KPI-basierte Zusammenhänge in Geschäftsprozessen erkennt. Die Auswertung der Geschäftsprozessdaten erfolgt mittels erweiterter Fuzzy-Logik und spezieller Clusterverfahren. Auf Basis gefundener Abhängigkeiten können Anwender schließlich passende Maßnahmen einleiten.

Strategisch instandhalten

Jeder Maschinenstillstand kostet Geld, jede Wartungs- und Instandhaltungsmaßnahme auch. Um hier eine tragfähige Balance zu finden, kann KI-gestützte Software einen wichtigen Beitrag leisten. Sie bietet Unternehmen eine datenbasierte Grundlage für den Einstieg und Betrieb einer integrierten Asset-Management-Strategie.

www.deepqualicision.de

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: © Wilhelm Mierendorf / Telent GmbH
Bild: © Wilhelm Mierendorf / Telent GmbH
Sicherheit
durch Zwiebelschichten

Sicherheit durch Zwiebelschichten

Smarte Produktionsmaschinen und intelligente Steuerungen in kritischen Infrastrukturen sind oft schlecht gerüstet gegen Cyberangriffe. Ob Systeme mit veralteter Firmware oder im Internet frei zugängliche Bedienoberflächen – es gibt immer mehr eklatante Schwachstellen, die Cyberkriminelle geschickt ausnutzen. Sind Hacker erst einmal in ein OT-Netz eingedrungen, ist die Gefahr groß, denn noch besitzen die wenigsten Betriebe moderne Sicherheitsarchitekturen wie Defense in Depth. Das wie eine Zwiebel aufgebaute Konzept schützt das Kernnetz mit mehreren spezialisierten Verteidigungsschichten.

Bild: Bildschoen - Boris Trenkel
Bild: Bildschoen - Boris Trenkel
Digitale Plattform für die TGA im Hochhaus

Digitale Plattform für die TGA im Hochhaus

Gemeinsam mit dem Immobilienunternehmen Heimstaden hat Metr ein 19-stöckiges Hochhaus mit 150 Wohneinheiten grundlegend digitalisiert. Heizungsanlage, Trinkwasserinstallation, Aufzüge und auch die Schließanlage werden nun in einem zentralen Dashboard fernüberwacht. Das Projekt zeigt: Die Lösung des Berliner Technologieunternehmen lässt sich umfangreich und schnell erweitern – auch in großen Gebäudekomplexen.

Bild: Endian SRL
Bild: Endian SRL
10-Punkte-Plan

10-Punkte-Plan

Die Zahl der Cyberattacken ist in 2021 rasant gestiegen. Mit der wachsenden Vernetzung sowie der Integration von Software rückt auch die Operational Technologie (OT) zunehmend in den Fokus der Angreifer. Endian, Anbieter im Bereich Industrial IoT und Security, empfiehlt zehn Schutzmaßnahmen für die OT.

Bild: ProSoft Software Vertriebs GmbH
Bild: ProSoft Software Vertriebs GmbH
Erst mal durch 
die Datenschleuse

Erst mal durch die Datenschleuse

Der Grad der Vernetzung und Digitalisierung in der Produktion hat in Deutschland gerade bei KMUs noch viel Potenzial. 2018 lag die Digitalisierungsquote erst bei 30 Prozent, respektive 20 Prozent bei kleineren Unternehmen. Durch die konsequente Digitalisierung kann laut der Unternehmensberatung McKinsey der Wirtschaftsstandort Deutschland bis 2025 insgesamt 126 Milliarden Euro zusätzlich an Wertschöpfung erreichen und Standortnachteile abfedern. Immerhin 25 Prozent der Wertschöpfung entfallen in Deutschland auf das produzierende Gewerbe.

Anzeige

Anzeige

Anzeige