Embedded-KI in Sensorplattformen
Data Driven Maintenance
Die aktuelle Generation von Maschinen und Anlagen kann eine große Menge von Daten liefern, die meist in einer Cloudlösung gespeichert und im Bedarfsfall analysiert wird. Gleichzeitig werden Embedded Devices immer leistungsfähiger, wodurch bereits neuronale Netze in solchen Systemen eingelernt und ausgeführt werden können. Das hierin liegende technische Potenzial zur automatisierten Überwachung ist also vorhanden, bleibt aber noch oft ungenutzt.
Bild: Knowtion GmbH

Die Plattformen die für die hier betrachteten Anwendungsfälle und Algorithmen-Pipeline betrachtet werden, basieren auf einem ARM-Cortex-M4F-Prozessor und besitzen ein integriertes Power-Management, analoge und digitale Peripheriegeräte zur Datenerfassung, -verarbeitung, -steuerung und -konnektivität. Als integrierte Sensoren stehen beispielsweise Temperatur, Luftfeuchte, Beschleunigung, Drehrate, Magnetfeld und sogar Akustik zur Verfügung. Die hier vorgestellte Algorithmen-Pipeline für die Anomalieerkennung wurde für solche Sensorplattformen implementiert und daraufhin abgestimmt, kann aber auch an andere Plattformen adaptiert werden.

Anwendungsspektren

Die Embedded-Sensorplattformen inklusive der dafür entwickelten Algorithmen haben ein sehr breites Anwendungsspektrum im Bereich der Überwachung von Maschinen, Anlagen und Prozessen von der Detektion von Anomalien bis zur komplexen Fehlerdiagnose und der sofortigen Einleitung der Störungsbeseitigung. Es können Prozesszustände, Lager- oder Statorschäden, Ausfall der Steuerungselektronik, etc. und auch unbekannte Veränderungen des Systemverhaltens z.B. durch einen Schaden in der Elektronik durch die Algorithmen erkannt werden. Ist ein Vorhersagemodell von bestimmten Schäden vorhanden, können diese sogar prädiziert werden.

Algorithmen für Embedded-Systeme

Die Verarbeitung der Daten mittels maschinellen Lernens erlaubt eine automatisierte Analyse auch von komplexen Sensordaten. Dadurch gelangt man in der gesamten Datenverarbeitungskette automatisch von den Daten zu der gewünschten Information und somit zu einem Mehrwert. Die Wahl eines Algorithmus ist oft von dem vorhandenen Wissen über die Anwendung abhängig. Ist umfangreiches Fachwissen vorhanden, spielen die eingesetzten Algorithmen eher eine unterstützende Rolle. Ist kein Expertenwissen vorhanden, können die Algorithmen wesentlich komplexer werden. Bei der Modellbildung, können prinzipiell zwei Ansätze unterschieden werden: datengetriebene und modellbasierte Ansätze.

Bild: Knowtion GmbH

Datengetriebene Ansätze

Sind lediglich Daten vorhanden und kein Hintergrundwissen, welches in Form von mathematischen Gleichungen beschreibbar wäre, so müssen sogenannte datengetriebene Ansätze gewählt werden. Diese Algorithmen extrahieren die gewünschte Information direkt aus den Daten. Hierzu zählen das gesamte Spektrum an Methoden aus dem maschinellen Lernen, wie beispielsweise Lineare Regression, Neuronale Netze, Random Forest oder Hidden Markov Modelle. Eine typische Algorithmen-Pipeline für datengetriebene Ansätze die auf Embedded-Sensorplattformen umgesetzt werden kann besteht aus vier Komponenten: Datenvorverarbeitung, Merkmalsextraktion, Merkmalsreduktion und der eigentliche maschinelle Lernalgorithmus. Der entscheidende Faktor hier ist der begrenzte Speicher der auf der Sensorplattform zur Verfügung steht. Deshalb müssen die maschinellen Lernalgorithmen, aber auch alle vorher erwähnten Algorithmen der gesamten Pipeline, so abgeändert werden, dass die Sensordaten jeweils direkt verarbeitet werden. Jeder Datenpunkt wird von den Algorithmen nur einmal verwendet, d.h., die gesamte Information wird direkt heraus extrahiert und das speicherintensive sammeln von großen Datenmengen – und damit verbunden auch die hohen Datentransfer- und Speicherkosten – entfällt. Diese Art der Verarbeitung wird auch Streaming-Analytics genannt. Die oben genannte Algorithmen-Pipeline wurde auf Sensorplattformen implementiert und für die Anomalieerkennung in unterschiedlichen Anwendungen evaluiert. Nachfolgend soll dies hinsichtlich der Überwachung eines Gleichstrommotors näher beschrieben werden. Als Eingangsdaten wurden die Beschleunigungs- und Gyroskopdaten mit einer Abtastung von jeweils 1kHz benutzt. Bei der Vibrations-Überwachung wurden zusätzlich noch die Akustik- und Magnetfelddaten als Eingangsdaten benutzt, um auch andere Auffälligkeiten wie beispielsweise akustische Veränderungen zu berücksichtigen. Durch diese Kombination der Sensoren über intelligente Algorithmen wurde die Detektionsgenauigkeit drastisch erhöht. Die Ergebnisse der lokalen Berechnung auf der Sensorplattform sind in der oberen Abbildung beispielhaft dargestellt. Es sind die Beschleunigungs- und Gyroskopdaten, die lokal abgeleiteten Merkmale und der lokal berechnete Anomalieindikator dargestellt. Es ist zu erkennen, dass dieser Indikator bei neuen Signalverhalten stark ansteigt und bei nochmaligem Auftreten sehr viel niedriger ist, d.h., dass neu erkannte Signal wurde durch den Lernalgorithmus in das Modell berücksichtigt und aktualisiert. In der praktischen Anwendung folgt, nachdem der Algorithmus alle Gut-Daten gesehen hat, die dauerhafte Überwachung der Maschine wo nur noch bei unbekannten Zuständen eine Warnung generiert werden würde.

Knowtion GmbH
http://www.knowtion.de

Das könnte Sie auch Interessieren

Bild: TREND NETWORKS
Bild: TREND NETWORKS
Trend Networks ernennt neuen Customer Experience Manager für Europa

Trend Networks ernennt neuen Customer Experience Manager für Europa

Steve Slyne, der frühere Market Manager von Trend Networks, hat mit sofortiger Wirkung die Position des Customer Experience Manager für Europa des Unternehmens übernommen. Trend Networks, bekannt unter der ehemaligen Firmierung Ideal Networks, kann somit die Expertise aus Kundendienst und technischem Support für seine Prüf- und Messtechnik für Netzwerke, PoE, CCTV-Kameras, Bandbreite und Industrial Ethernet bündeln.

Bild: Lean.IQ
Bild: Lean.IQ
Wert und Nutzen der vorausschauenden Wartung

Wert und Nutzen der vorausschauenden Wartung

Welchen Wert haben digitale Lösungen zur vorbeugenden Wartung? Bzw. wie teuer sind heutzutage Ausfallzeiten aufgrund von Geräteausfällen? Maschinenhersteller und auch Betreiber wünschen sich zunehmend mehr Einblick in den Maschinenzustand und insbesondere in den vorhergesagten Maschinenzustand.

Bild: KEB Automation KG
Bild: KEB Automation KG
Mehr als Daten sammeln

Mehr als Daten sammeln

In der Industrie stehen Schlagworte wie Digitalisierung, Industrial Internet of Things (IIoT) und künstliche
Intelligenz (KI) seit langem für die Möglichkeit, Produktionsabläufe und Wartungsmodelle auf der Basis von Daten zu optimieren. Dadurch ergeben sich für Maschinen- und Komponentenhersteller gleichermaßen Chancen, ihren Kunden neue Angebote für digitale, datenbasierte Services zu machen.

Die Edge braucht 
hochwertige Daten

Die Edge braucht hochwertige Daten

Die Erwartungen an Edge-Computing-Lösungen im Zusammenhang mit Predictive-Maintenance-Aufgaben oder KI-basierten Lösungsassistenten sind groß. Übersehen wird dabei vielfach die Bedeutung qualitativ hochwertiger Daten. Denn ohne ein möglichst vollständiges Datenabbild sind auch keine werthaltigen Edge-Datenanalysen möglich.

Bild: ©bizvector/stock.adobe.com
Bild: ©bizvector/stock.adobe.com
Verwaltung mobiler Geräte und Apps in Field-Service-Management-Projekten

Verwaltung mobiler Geräte und Apps in Field-Service-Management-Projekten

Die Verwaltung von Apps auf unterschiedlichen mobilen Endgeräten ist ein Thema, das während eines Field-Service-Management-Projekts oft erst während der Umsetzung aufgegriffen wird. Dabei ist eine effiziente App-Verwaltung und -Verteilung sowie der sichere Zugriff auf das Unternehmensnetzwerk ein komplexer Bereich, über den sich Unternehmen bereits vor Beginn einer Field-Service-Management-Einführung Gedanken machen sollten.

Master-Studiengang ‚Cybersecurity‘

Die Universität des Saarlandes startet ab dem Wintersemester 2021/22 mit ‚Cybersecurity‘ einen englischsprachigen Masterstudiengang, der auf Sicherheit in der Informationstechnik spezialisiert ist.

Koch-Pac-Systeme setzt auf MobileX

MobileX hat Koch-Pac-Systeme als neuen Kunden für MobileX-CrossMIP, die Service-App für Techniker, und MobileX-Dispatch, die Software zur Einsatzplanung, gewonnen.