Lesedauer: 6min
Anlagenpannen und Wartungskosten reduziert
Robuste Abläufe mit Predictive Maintenance

Mrz 2, 2020 | Predictive Maintenance

Bereits kleine Fehler im Materialflusssystem können hohe Schäden verursachen. Um dieses Risiko zu reduzieren, setzt ein Hersteller solcher Anlagen auf Predictive Maintenance. Dessen sensorüberwachte Systeme fallen seltener ungeplant aus und im Wartungsfall wird nur getauscht, was fast hinüber ist. Eine Technologie, die sich durchsetzen düfte.
Bild: ©zapp2photo/stock.adobe.com

Der Zeitdruck steigt, während die Lieferkette immer komplexer wird. Dies beeinflusst auch die Störanfälligkeit. Bereits eine kleine Verzögerung bei Herstellung und Lieferung kann Komplikationen auf allen Ebenen nach sich ziehen. Produktion, Transport und Warenlagerung müssen möglichst perfekt ineinandergreifen, um Stillstandzeiten zu vermeiden und laufende Kosten gering zu halten. Eine präzise Vorhersage von Ausfällen und Schädigungen gewinnt dadurch immer mehr an Bedeutung.

Daten auf lokaler Ebene

Einst als futuristisches Konzept belächelt, ist die Anwendung von Predictive Maintenance (PdM) zwischenzeitlich in vielen Bereichen Realität. Ziel dabei ist nicht nur die Vermeidung von Stillstandzeiten in der Produktion, sondern auch die effektive Wartung einzelner Prozesskomponenten mittels der Analyse von Sensordaten. Die globale Technologieberatung DataArt hat auf dieser Basis für einen industriellen Anwender eine Cloud-basierte Predictive-Maintenance-Plattform entwickelt und installiert. Diese kann die Abnutzung von Komponenten vorhersagen, damit die erforderliche Wartung durchgeführt werden kann, bevor ein Gerät ausfällt. Der Anwender ist Spezialist für Materialflusssysteme und plant, baut sowie installiert Fördersysteme für die Verteilungsanlagen großer Logistik- und Produktionsunternehmen. Selbst kleinere Ausfälle können bei diesen Systemen einen Betrieb zum Stillstand bringen und Umsatzeinbußen in Millionenhöhe verursachen. Deshalb legt das Unternehmen großen Wert auf die Überwachung des Zustands seiner Fördersysteme, maximale Zuverlässigkeit und minimale Wartungskosten.

Cloudbasierter Datentransfer

Zur präzisen Datenaufnahme wurden an allen abbaubaren Förderteilen, einschließlich Motoren, Getrieben und Lagern, Sensoren installiert. Diese messen Temperatur, Vibration, Fördergeschwindigkeit, Leistungsaufnahme, Luftstrom, Druck und andere wichtige Variablen. Eine besondere Herausforderung bestand im Transfer der unterschiedlichen Daten. Einige Fördersysteme befinden sich in Anlagen mit geringer oder gar keiner Konnektivität und begrenzten Möglichkeiten für drahtgebundene Verbindungen. Deshalb entwickelte DataArt eine drahtlose mobile Konnektivitätslösung, um die Daten über Gateways in die Cloud und von dort in den Cloud-Speicher zu leiten. Diese abgesicherten Industrie-Gateways unterstützen viele Protokolle wie I2C, Modbus, MQTT, Rest und weitere. Die Mobilfunkverbindung ist in diesem Fall der einfachste Weg gewesen, um eine Verbindung für entfernte oder isolierte Hardwareteile herzustellen. Für höhere Zuverlässigkeit wurden Mechanismen zum Gateway-Switching eingebaut, falls eines ausfällt.

Datenanalyse und Machine Learning

Zusätzlich zur Erfassung der Echtzeit-Sensordaten sammelte das Team historische Daten, hardwarespezifische demografische Informationen, Wetter- und Geodaten, Inspektionsergebnisse, technische Handbücher und Wartungsberichte. Zusammen mit den Messdaten bieten diese die Datengrundlage für die Ausfallprognosen. Für diese Prognosen mussten auch die jeweils sinnvollsten Algorithmen für das Training der maschinellen Lernmodelle identifiziert werden. Dabei wurden für jedes Bauteil mehrere Modelle des maschinellen Lernens entwickelt, wobei jedes Modell für die Überwachung einer bestimmten Größe (Temperatur, Vibration, Leistungsaufnahme, etc.) verantwortlich ist. Jedes Modell wurde auch geschult, um den Bereich des normalen Verhaltens zu identifizieren und festzustellen, ob Abweichungen vom normalen Bereich signifikant genug sind, um Warnmeldungen zu rechtfertigen. Hier kamen Daten zum Einsatz, die in Pilotprojekten gesammelt wurden und den Zustand der Ausrüstung unter Normalbedingungen ebenso wie bei abweichendem Verhalten darstellten. Für das prädiktive Modell kamen Rohdaten zum Einsatz, für die eigentliche Darstellung speziell aufbereitete Daten. Das Modell basiert auf LTSM-Architektur und wird mit Sensordaten gespeist, um vorhersagen zu können, wie beispielsweise Maschinen unter normalen Bedingungen arbeiten. Diese Daten werden mit denen des Ist-Zustands verglichen. Jegliche Abweichung wird als Fehlfunktion behandelt. Wobei kleinere und größere Probleme in jeweils verschiedenen Warnstufen klassifiziert werden. Damit lassen sich selbst leichte Abweichungen erkennen und damit feststellen, wann welche mechanischen Teile einer Anlage sich in kritischem Zustand befinden oder nur größere Aufmerksamkeit in der Wartung erfordern.

Ohne Server vor Ort

Die vom Technologieunternehmen entwickelte serverlose, Cloud-basierte Lösung erlaubt eine kontinuierliche Überwachung kritischer Geräte und visualisiert eine Echtzeitansicht des Anlagenzustands. Zudem beinhaltet die PdM-Plattform Werkzeuge zur Datenspeicherung, Analyse und Visualisierung sowie eine leistungsstarke Alarmfunktion. Das System kann so einerseits vor ungeplanten Ausfallzeiten schützen, andererseits werden Reparaturen nur bei Bedarf ausgeführt. Wartungskosten können so reduziert und Instandhaltungsressourcen effizient verteilt werden. PdM-Lösungen wie diese werden branchenübergreifend immer häufiger realisiert. Für die Weiterentwicklung der Unternehmensabläufe und den Einsatz der Maschinen innerhalb der Produktion ist die vorausschauende Instandhaltung die nächste wichtige Entwicklung. n Consultant – Digital Transformation and IoT Solutions bei DataArt.

www.dataart.com

Autor:
Firma: Data Art
http://www.dataart.com

MARKT – TRENDS – TECHNIK

Weitere Beiträge

Das könnte Sie auch interessieren

Vielseitig und robust

Schneider Electric bringt ein neues universelles Sicherheitsrelais auf den Markt, das mehr als 40 unterschiedliche Status- und Meldeberichte über eine einzige festverdrahtete Verbindung ermöglicht. Ebenfalls neu sind die Drucktaster-Frontelemente Harmony Flush, die sich auch für raue Umgebungsbedingungenen eignen.

mehr lesen

Funktionale Sicherheit gepaart mit vorbeugender Instandhaltung

Mit dem Seriellen-Diagnose(SD)-Interface bietet Schmersal eine Lösung, umfassende Status- und Diagnosedaten elektronischer Sicherheitssensoren bzw. Zuhaltungen und Bedienfelder über ein entsprechendes Gateway an eine übergeordnete Maschinensteuerung zu übertragen. Dabei ist pro SD-Gateway die Kommunikation mit bis zu 31 Slaves möglich, die nach Bedarf auf verschiedene Sicherheitskreise aufgeteilt sein können. Über die weiteren Vorteile des Systems und andere Safety-Trends sprach das SPS-MAGAZIN exklusiv mit Volker Heinzer, dem zuständigen strategischen Produktmanager.

mehr lesen

Das Kabel schlägt Alarm, bevor es bricht

Von außen sieht das Kabel intakt aus. Aber innen? Lapp hat eine Technologie entwickelt, mit der man die Alterung eines Kabels bestimmen und die Dauer bis zum Ausfall vorhersagen kann. Stichwort: Predictive Maintenance. Die Lösung kommt ohne Änderungen am Kabel aus und benötigt keine Opferadern. Zum Start gibt es diese Technologie für Ethernet-Leitungen. Anwender können künftig Kabel austauschen, bevor es zu einem teuren Stillstand der Maschine kommt.

mehr lesen

Schaeffler baut Service-Solutions-Portfolio aus

Condition-Monitoring-Systeme (CMS) auf Basis von Körperschallschwingungen sind ein bewährtes Mittel, um ungeplante Stillstände von Maschinen und damit Produktionsverlust zu vermeiden. Schaeffler präsentiert mit Optime eine neue Zustandsüberwachungslösung im unteren Preissegment. Damit ergänzt Optime das bestehende Condition-Monitoring-Portfolio um ein System, das insbesondere die Zustandsüberwachung der großen Zahl indirekt prozesskritischer Aggregate in Produktionsanlagen automatisiert und wirtschaftlich macht.

mehr lesen

Verschleißerkennung per App

Damit zerspanende Bearbeitungen reibungslos, prozesssicher ablaufen, müssen viele Rädchen passend ineinandergreifen. Werden schlechte Ergebnisse oder gar Ausschuss produziert, kann dies mehrere Ursachen haben. Sind verschlissene Schneiden der Grund, stellen sich folgende Fragen: Um welchen Verschleiß handelt es sich? Warum tritt dieser Verschleiß auf und wie kann er zukünftig vermieden werden?

mehr lesen
Kann das weg oder macht ihr Retrofit?

Kann das weg oder macht ihr Retrofit?

Vernetzte Maschinen bieten echte Vorteile, die zentrale Überwachung von Anlagen birgt große Verbesserungspotenziale. Aber wenn hierfür erst die einst teuer angeschafften Maschinen ausgetauscht werden müssen, dann ist das Kosten/Nutzen-Verhältnis in Frage gestellt. Eine Lösung für dieses Problem heißt Retrofit.

mehr lesen

Kaefer übernimmt Wood Group In­dus­tri­al Ser­vices

Mit der Über­nah­me des In­dus­trie­dienst­leis­tungs­ge­schäfts (Wood Group In­dus­tri­al Ser­vices) von der John Wood Group PLC, kann die Kaefer-Grup­pe ihre Markt­po­si­ti­on in Groß­bri­tan­ni­en und Ir­land stärken.

Knowledge Day in Blaubeuren

Auf dem Knowledge Day in Blaubeuren erhalten Teilnehmer unter anderem praxisorientierte Einblicke in die Themen Predictive Maintenance und MES.