Smarte Motorstromanalyse an Elektromotoren

Der Motor als Sensor

Elektromotoren und Maschinen sind mechanisch über Riemen, Kupplungen, Getriebe oder direkt miteinander verbunden. Über diese konstruktive Ankopplung werden Schwingungen der Arbeitsmaschine oder mechanische Prozessstörungen auf den Motor zurück übertragen. Dort bilden sich diese Effekte in Motorstrom und -spannung ab. Mit einer geeigneten Messtechnik können die Rückwirkungen noch in den elektrischen Zuleitungen des Motors im Schaltschrank gemessen, ausgewertet und den verursachenden Symptomen zugeordnet werden.
 Das e-MCM kann durch einen Selbstlernprozess 
Maschinendaten nutzen, um Fehler zu erkennen.
Das e-MCM kann durch einen Selbstlernprozess Maschinendaten nutzen, um Fehler zu erkennen. – Bild: Avibia GmbH

Genau das soll e-MCM von Artesis vollautomatisch leisten und dabei den Elektromotor als Sensor nutzen. Zusätzlich werden die wichtigsten elektrischen Gesundheitsdaten des Motors und dessen Leistungswerte gleichzeitig mit ermittelt. Entwickelt wurde das System für die vorausschauende Instandhaltung kritischer, rotierender Wechselstrommaschinen. Der patentierte maschinelle Lernalgorithmus ermöglicht eine umfassende Fehlererkennung bereits im Voraus eines sich anbahnenden Schadens. Mit der permanenten Überwachung und der modellbasierten Spannungs- und Stromanalyse in Echtzeit können elektrische, mechanische sowie Prozessfehler von Motoren und Generatoren mit fester und variabler Drehzahl erkannt werden. Die Installation erfolgt mit Hilfe von Stromtransformatoren an die drei Netzphasen des Motors und des Überwachungsmonitor in einer beliebigen Schalttafel. Das Gerät befindet sich typischerweise in oder in der Nähe des Motor-Steuerschranks und ist besonders nützlich in Umgebungen, in denen die Motoren nicht leicht zugänglich sind, entweder weil sie abgelegen oder die Umgebung gefährlich oder unzugänglich ist.

 Das System vergleicht den digitalen Zwilling mit den realen Werten.
Das System vergleicht den digitalen Zwilling mit den realen Werten.Bild: Avibia GmbH

Automatisierte Analyse

Beim ersten Einschalten beginnt das e-MCM einen automatischen Selbstlernprozess, bei dem es den normalen Betriebszustand der Anlage erlernt. Wenn ein neuer Betriebszustand identifiziert wurde, den es während der Selbstlernphase nicht kennen gelernt hat, bietet es die Möglichkeit, diesen Zustand in zukünftige Überwachungen mit einzubeziehen. Das System führt kontinuierlich Messungen durch und vergleicht diese mit dem digitalen Zwilling, der während des Selbstlernprozesses erstellt wurde. Hierbei wird eine mathematische Modellierungsmethode zur Erkennung und Diagnose von Fehlern in Elektromotoren und damit verbundenen Komponenten verwendet. Das mathematische Modell wird während der Selbstlernphase im Betrieb automatisch gebildet. Während dieser Phase werden die drei Eingangsspannungen und -ströme kontinuierlich gemessen und mit Hilfe von Systemidentifikationsalgorithmen verarbeitet, die die Modellparameter unter einer ganzen Reihe von Betriebszuständen bestimmen. Sobald dies abgeschlossen ist, verfügt das System über ein vollständiges Modell, das das normale Verhalten der Maschine in einem umfassenden Bereich von Betriebszuständen darstellt. Wenn ein Fehler im Motor, im Antriebsstrang oder in der angetriebenen Ausrüstung auftritt, wirkt sich dies auf die Signalform des Eingangsstroms aus, wodurch sich das reale System anders verhält als das Modellsystem. Zum Beispiel können kleine radiale und axiale Verschiebungen, die aus einer Unwucht in einem angetriebenen Ventilator resultieren, über die Kupplung auf den Motor übertragen werden und verändern dessen elektrische Eigenschaften in messbarer und reproduzierbarer Weise. Durch den Abgleich von Änderungen in jedem dieser Parameter mit der entsprechenden physikalischen Eigenschaft des Motors oder des angetriebenen Systems und die Bewertung der Intensität wird bestimmt, ob der aktuelle Zustand der Ausrüstung normal ist und wenn nicht, welche Maßnahmen ergriffen werden sollten. Dieser Ansatz ermöglicht nicht nur eine viel empfindlichere und zuverlässigere Alarmierung, als dies mit herkömmlichen Level-Alarmen möglich ist, sondern erkennt auch die Art des Defekts, der das Problem verursacht.

 Auszug aus dem Zustandsbericht eines e-MCM-Gerätes.
Auszug aus dem Zustandsbericht eines e-MCM-Gerätes.Bild: Avibia GmbH

Fazit

Sensorbasierte Zustandsüberwachungssysteme sind zwar hervorragend in der Lage, Daten zu sammeln, erfordern meistens aber viel Fachwissen, um sie in verwertbare Aussagen umzuwandeln – genau das ist für die meisten Anwender aber entscheidend für die Nutzbarkeit und den Wert eines CMS-Systems. Das e-MCM ist in der Lage, sein durch den Selbstlernprozess aufgebautes Wissen über die Maschinen zu nutzen, um nicht nur zu erkennen, wann sich ein Fehler entwickelt, sondern auch die Art des Fehlers zu erkennen. Dadurch kann ein Wartungsteam die Maßnahmen genau auf den richtigen Bereich konzentrieren, ohne auf die Unterstützung durch einen Diagnoseexperten angewiesen zu sein. Die Software des Gerätes ermöglicht dem Anwender eine detaillierte Analyse mit den Werkzeugen Leistungsspektraldichte und Trendanalyse nach den Ursachen der Fehler. Es ist so konzipiert, dass es autark arbeitet und nur dann eingreifen muss, wenn es ein Problem erkennt.

Das könnte Sie auch Interessieren

Bild: Analog Devices GmbH
Bild: Analog Devices GmbH
Warum vorausschauende Wartung?

Warum vorausschauende Wartung?

Allein in Fabriken in den USA entstehen pro Jahr ungeplante Ausfallzeiten von 14 Millionen Stunden. Die Ursache dafür, Systemfehler, bescheren der Industrie Kosten in Milliardenhöhe. Um solche Szenarien zu verhindern,
nutzen Fabriken in der Regel einen teuren manuellen Ansatz: Experten sammeln Daten, um den Zustand der
Anlagen zu beurteilen. Auch kommen oft Sensorlösungen zum Einsatz, die jedoch nicht alle möglichen Ausfälle zuverlässig erkennen können. Mehr Potenzial versprechen Systemlösungen für die vorausschauende Wartung.

Bild: Roxon
Bild: Roxon
Online-Zustandsüberwachung für Gurtförderanlagen

Online-Zustandsüberwachung für Gurtförderanlagen

Schmersal stellt über seinen Systempartner Roxon eine vollautomatisierte Online-Zustandsüberwachung für Gurtförderanlagen vor: Der HX170 basiert auf einer optischen Zustandsüberwachung des Oberflächenprofils, wodurch alle möglichen Beschädigungen der Verbindungsstellen sowie Längsschlitze, Risse und Löcher an der Bandoberfläche erkannt werden sollen.

Bild: Fraunhofer-Institut IGD/©angkhan/stock.adobe.com
Bild: Fraunhofer-Institut IGD/©angkhan/stock.adobe.com
Risiken verringern: Fraunhofer-Software entwickelt FMEA weiter

Risiken verringern: Fraunhofer-Software entwickelt FMEA weiter

Ob autonomes Fahrzeug in der Intralogistik oder Werkzeugmaschine in der industriellen Fertigung: Fehler und Ausfälle einzelner Geräte und Komponenten sind nicht immer zu vermeiden. Deren Wahrscheinlichkeit einzuschätzen und den Aufbau technischer Systeme hinsichtlich ihrer Betriebs- und Prozesssicherheit zu verbessern, ist daher umso wichtiger. Mit proSvift entwickelten Forschende des Fraunhofer IGD ein neues Analysewerkzeug, das auf einer probabilistischen Fehlermöglichkeits- und Einflussanalyse (FMEA) basiert und intuitiv steuerbar ist. Anwender sollen so Produktionsausfälle, kritische Auswirkungen und Folgekosten reduzieren können.