Kostenreduzierung in der Ersatzteilplanung durch KI-basierte Prognosen

Leo Müller ist Planer im Zentrallager eines großen Automobilherstellers. In den letzten Jahren kam es immer wieder zu hohen Inventarüberschüssen im Ersatzteilbereich. Oft lagern am Ende des Lebenszyklus eines Teils noch hohe Bestände im Zentrallager. Diese Bestände haben über Jahre Lagerplatz eingenommen und müssen dann verschrottet werden. Eine große Verschwendung von Ressourcen, Kapital und Lagerplatz. Aber wieso muss es dazu kommen?
 IBM hat für die Ersatzteilvorhersage in verschiedenen Lebenszyklusphasen eine Lösung zur Vorhersage der zukünftigen Ersatzteilverbräuche über den gesamten Ersatzteillebenszyklus entwickelt.
IBM hat für die Ersatzteilvorhersage in verschiedenen Lebenszyklusphasen eine Lösung zur Vorhersage der zukünftigen Ersatzteilverbräuche über den gesamten Ersatzteillebenszyklus entwickelt.Bild: IBM Deutschland GmbH

Automobilhersteller in Deutschland haben den Anspruch ihren Kunden auch nach Auslauf eines Modellbauzyklus für mindestens 10 Jahre Originalersatzteile zur Verfügung zu stellen. Ein normaler Bauzyklus dauert ca. sieben Jahre. Während dieser Zeit ist die Versorgung mit Ersatzteilen problemlos zu gewährleisten, da die Zulieferer regelmäßig Teile für die Produktion liefern. Von diesem Teilefluss lassen sich die Ersatzteilbedarfe abzweigen und es besteht eine hohe Verfügbarkeit bei Werkstätten und Endkunden.

Ersatzteilbedarfe in der Automobil-Branche

Schwieriger wird es für Leo Müller, nach dem Ende des Autoproduktionszyklus den Ersatzteilbedarf seiner Kunden weiterhin zu erfüllen. Für schnelldrehende Teile, das heißt Bauteile, die verglichen mit anderen Bauteilen schnell abgenutzt sind und in hoher Frequenz nachgefragt werden, zum Beispiel Schrauben, kann er eine dauerhafte Belieferung mit dem Lieferanten vereinbaren. Kompliziert wird es hingegen bei Ersatzteilen, welche nur unregelmäßig benötigt werden, zum Beispiel den lilafarbenen Kotflügel. Die Kosten pro Stück können sehr hoch sein, da der Lieferant jederzeit eine Produktionsstraße für das Ersatzteil zurückhalten muss, diese aber oft nicht auslasten kann.

Eine weitere Strategie ist es, in regelmäßigen Abständen den Bedarf für ein vorher definiertes zeitliches Intervall zu bestellen. Hier entstehen Zusatzkosten für die Lagerung und die Umrüstung der Produktion beim Lieferanten.

 Übersicht der Ersatzteilbedarfe in der Automobil-Branche.
Übersicht der Ersatzteilbedarfe in der Automobil-Branche.Bild: IBM Deutschland GmbH

Schließlich gibt es die Strategie des sogenannten Last Time Buy. Hier muss Leo Müller die wahrscheinliche Nachfrage nach dem Ersatzteil für den gesamten restlichen Lebenszyklus auf einmal bestellen. Diese Bestellung muss bis zu 30 Jahre in die Zukunft reichen. Dadurch kann sich Leo günstige Herstellungskosten pro Stück sichern. Allerdings entstehen höhere Lagerhaltungskosten und ein höheres Risiko am Ende des Ersatzteillebenszyklus hohe Endbestände zu haben. Es besteht auch das Risiko eines Stock outs. Dieser tritt ein, wenn die bestellte Menge zu schnell abverkauft ist. Dann muss in Verhandlungen mit dem Lieferanten getreten werden, um nachbestellen zu können. Der Lieferant hat in diesem Fall eine sehr gute Verhandlungsposition und kann wahrscheinlich hohe Stückpreise erzielen.

Statistische Modellierung zur Ersatzteilvorhersage in verschiedenen Lebenszyklusphasen

IBM hat für diese Herausforderung eine Lösung zur Vorhersage der zukünftigen Ersatzteilverbräuche über den gesamten Ersatzteillebenszyklus entwickelt. Die Lösung basiert auf verschiedenen Vorhersagemethoden, unter anderem ähnlichkeitsbasierte Methoden der Künstlichen Intelligenz wie beispielsweise Neuronale Netzwerke und Regressionsmodelle. Außerdem hat IBM kausalbasierte Vorhersagemodelle entwickelt. Es wurden insgesamt sechs unterschiedliche statistische Modelle zur Absatzvorhersage für verschiedene Lebenszyklusphasen erstellt.

Auf der einen Seite gibt es sogenannte ähnlichkeitsbasierte Modelle. Diese lernen anhand der Absatzdaten älterer Ersatzteile, wie Ersatzteilkurven aussehen können. Zur Erlernung der Kurven werden Smoothing Splines (Funktionsschätzungen) genutzt. Dieses Wissen wird für die Absatzvorhersage jüngerer Ersatzteile genutzt. Es gibt aber auch Neuronale Netzwerke, die zum Beispiel für die Bedarfsvorhersage von Ersatzteilen mit sporadischer Nachfrage genutzt werden. Darüber hinaus hat IBM kausalbasierte Modelle erarbeitet, die die Anzahl an Fahrzeugen im Markt, ihre Schwundrate und die Fehlerrate der Ersatzteile zur Basis für ihre Vorhersage nehmen.

Diese Prognose hilft Leo Müller bei den schwierigen Entscheidungen, welches Ersatzteil wann und in welchem Umfang eingelagert werden soll. Seitdem die Lösung produktiv ist, wurden jährliche Einsparungen in Millionenhöhe realisiert, hauptsächlich durch die Reduktion zu hoch geplanter Ersatzteilnachfrage.

Die Lösung kann nicht nur in der Automobilindustrie eingesetzt werden, sondern in jeder Branche, die mit hohen Ersatzteilbedarfen arbeitet. Zu nennen sind hier die Luftfahrtbranche, Kraftwerksausrüster, Maschinenproduzenten oder Rüstungsunternehmen. Sie alle haben langlebige Produkte im Sortiment, für die sie Ersatzteile mit hohem Verfügungsgrad für lange Zeit vorhalten müssen.

Teil einer umfassenden Lösung

Die Mittel- und Langfrist Ersatzteilprognose ist Teil eines IBM Services Offerings im Supply Chain Bereich. Unter anderem gibt es Assets und Projektansätze zur Inventar- und Safety Stock Optimierung, automatische Bestellbearbeitung, kurzfristige Demand Forecasts oder Supply Chain Risiko Evaluation.

www.ibm.de

Das könnte Sie auch Interessieren

Bild: Geze GmbH
Bild: Geze GmbH
Überwachung von 
Rettungsweg und Fluchttüren

Überwachung von Rettungsweg und Fluchttüren

Die Integration von Rettungsweg- und Fluchttürüberwachung in das Gebäudeautomationsmanagement bietet vielfältige Vorteile. Es gibt bei Flucht- und Automatiktüren aber auch viel zu beachten, sowohl auf rechtlicher, als auch auf funktioneller Ebene. Die Unternehmen Iconag-Leittechnik und Geze arbeiten hierbei mit ihren Lösungen eng zusammen.

Bild: Phoenix Contact Deutschland GmbH
Bild: Phoenix Contact Deutschland GmbH
Höhere Verfügbarkeit bei 
geringeren Wartungskosten

Höhere Verfügbarkeit bei geringeren Wartungskosten

Die Krah-Gruppe stellt unter anderem Leistungswiderstände für die Automobilindustrie her. Zur Profinet-basierten Weiterleitung der Sensordaten wurden in der Vergangenheit Steckverbinder-Lösungen genutzt. Da diese in beweglichen Anwendungen wie den Laserschweißautomaten des Herstellers störanfällig sind und schnell verschleißen, kommt nun die kontaktlose und damit verschleißfreie Energie- und Ethernet-Übertragungslösung NearFi zum Einsatz.

Bild: TXOne Networks
Bild: TXOne Networks
CPS Cybersecurity

CPS Cybersecurity

Die Konvergenz von digitaler und physischer Welt hat im Zuge des rasanten technologischen Fortschritts zu einem neuen Bereich geführt, der als cyber-physische Systeme (CPS) bezeichnet wird. Diese Systeme verbinden computergestützte Algorithmen nahtlos mit physischen Prozessen und fördern so eine symbiotische Beziehung zwischen dem Virtuellen und dem Materiellen. Von autonomen Fahrzeugen und Smart Cities bis hin zur Industrieautomatisierung und der Kontrolle kritischer Infrastrukturen haben CPS die Art und Weise, wie wir mit unserer Umwelt interagieren und sie verwalten, revolutioniert.

Bild: Eurogard GmbH
Bild: Eurogard GmbH
Mehrwerte für Fernwartung, Monitoring und Analyse

Mehrwerte für Fernwartung, Monitoring und Analyse

Browser öffnen und einloggen: Schon sind alle verteilten Maschinen sichtbar. Eine integrierte Online-Plattform ermöglicht es Anwendern, Fernwartungsnetze, Maschinen-Monitoring und Datenanalyse vereint an einem Ort zu nutzen. Übersichtlichkeit, ein ausgefeiltes Rechtemanagement, vielfältige Analyse- und Service- Applikationen sollen dabei schnell und unkompliziert für spürbaren Nutzen bei Maschinenbauern und deren Kunden sorgen.

Bild: Engel Austria GmbH/©Fotostudio Eder
Bild: Engel Austria GmbH/©Fotostudio Eder
Smarte Lösung zur Ersatzteilidentifikation von Engel

Smarte Lösung zur Ersatzteilidentifikation von Engel

Mit der smarten Anwendung zur Ersatzteilidentifikation, dem part finder, zeigt das Unternehmen Engel, wie effektive Unterstützung für Kunststoffverarbeiter im Betriebsalltag funktioniert: eine einfache, zeitsparende Lösung, um die Maschinenverfügbarkeit zu verbessern und die Produktionseffizienz zu steigern. Ein Smartphone ist alles, was man dazu braucht.