Kostenreduzierung in der Ersatzteilplanung durch KI-basierte Prognosen

Leo Müller ist Planer im Zentrallager eines großen Automobilherstellers. In den letzten Jahren kam es immer wieder zu hohen Inventarüberschüssen im Ersatzteilbereich. Oft lagern am Ende des Lebenszyklus eines Teils noch hohe Bestände im Zentrallager. Diese Bestände haben über Jahre Lagerplatz eingenommen und müssen dann verschrottet werden. Eine große Verschwendung von Ressourcen, Kapital und Lagerplatz. Aber wieso muss es dazu kommen?
 IBM hat für die Ersatzteilvorhersage in verschiedenen Lebenszyklusphasen eine Lösung zur Vorhersage der zukünftigen Ersatzteilverbräuche über den gesamten Ersatzteillebenszyklus entwickelt.
IBM hat für die Ersatzteilvorhersage in verschiedenen Lebenszyklusphasen eine Lösung zur Vorhersage der zukünftigen Ersatzteilverbräuche über den gesamten Ersatzteillebenszyklus entwickelt.Bild: IBM Deutschland GmbH

Automobilhersteller in Deutschland haben den Anspruch ihren Kunden auch nach Auslauf eines Modellbauzyklus für mindestens 10 Jahre Originalersatzteile zur Verfügung zu stellen. Ein normaler Bauzyklus dauert ca. sieben Jahre. Während dieser Zeit ist die Versorgung mit Ersatzteilen problemlos zu gewährleisten, da die Zulieferer regelmäßig Teile für die Produktion liefern. Von diesem Teilefluss lassen sich die Ersatzteilbedarfe abzweigen und es besteht eine hohe Verfügbarkeit bei Werkstätten und Endkunden.

Ersatzteilbedarfe in der Automobil-Branche

Schwieriger wird es für Leo Müller, nach dem Ende des Autoproduktionszyklus den Ersatzteilbedarf seiner Kunden weiterhin zu erfüllen. Für schnelldrehende Teile, das heißt Bauteile, die verglichen mit anderen Bauteilen schnell abgenutzt sind und in hoher Frequenz nachgefragt werden, zum Beispiel Schrauben, kann er eine dauerhafte Belieferung mit dem Lieferanten vereinbaren. Kompliziert wird es hingegen bei Ersatzteilen, welche nur unregelmäßig benötigt werden, zum Beispiel den lilafarbenen Kotflügel. Die Kosten pro Stück können sehr hoch sein, da der Lieferant jederzeit eine Produktionsstraße für das Ersatzteil zurückhalten muss, diese aber oft nicht auslasten kann.

Eine weitere Strategie ist es, in regelmäßigen Abständen den Bedarf für ein vorher definiertes zeitliches Intervall zu bestellen. Hier entstehen Zusatzkosten für die Lagerung und die Umrüstung der Produktion beim Lieferanten.

 Übersicht der Ersatzteilbedarfe in der Automobil-Branche.
Übersicht der Ersatzteilbedarfe in der Automobil-Branche.Bild: IBM Deutschland GmbH

Schließlich gibt es die Strategie des sogenannten Last Time Buy. Hier muss Leo Müller die wahrscheinliche Nachfrage nach dem Ersatzteil für den gesamten restlichen Lebenszyklus auf einmal bestellen. Diese Bestellung muss bis zu 30 Jahre in die Zukunft reichen. Dadurch kann sich Leo günstige Herstellungskosten pro Stück sichern. Allerdings entstehen höhere Lagerhaltungskosten und ein höheres Risiko am Ende des Ersatzteillebenszyklus hohe Endbestände zu haben. Es besteht auch das Risiko eines Stock outs. Dieser tritt ein, wenn die bestellte Menge zu schnell abverkauft ist. Dann muss in Verhandlungen mit dem Lieferanten getreten werden, um nachbestellen zu können. Der Lieferant hat in diesem Fall eine sehr gute Verhandlungsposition und kann wahrscheinlich hohe Stückpreise erzielen.

Statistische Modellierung zur Ersatzteilvorhersage in verschiedenen Lebenszyklusphasen

IBM hat für diese Herausforderung eine Lösung zur Vorhersage der zukünftigen Ersatzteilverbräuche über den gesamten Ersatzteillebenszyklus entwickelt. Die Lösung basiert auf verschiedenen Vorhersagemethoden, unter anderem ähnlichkeitsbasierte Methoden der Künstlichen Intelligenz wie beispielsweise Neuronale Netzwerke und Regressionsmodelle. Außerdem hat IBM kausalbasierte Vorhersagemodelle entwickelt. Es wurden insgesamt sechs unterschiedliche statistische Modelle zur Absatzvorhersage für verschiedene Lebenszyklusphasen erstellt.

Auf der einen Seite gibt es sogenannte ähnlichkeitsbasierte Modelle. Diese lernen anhand der Absatzdaten älterer Ersatzteile, wie Ersatzteilkurven aussehen können. Zur Erlernung der Kurven werden Smoothing Splines (Funktionsschätzungen) genutzt. Dieses Wissen wird für die Absatzvorhersage jüngerer Ersatzteile genutzt. Es gibt aber auch Neuronale Netzwerke, die zum Beispiel für die Bedarfsvorhersage von Ersatzteilen mit sporadischer Nachfrage genutzt werden. Darüber hinaus hat IBM kausalbasierte Modelle erarbeitet, die die Anzahl an Fahrzeugen im Markt, ihre Schwundrate und die Fehlerrate der Ersatzteile zur Basis für ihre Vorhersage nehmen.

Diese Prognose hilft Leo Müller bei den schwierigen Entscheidungen, welches Ersatzteil wann und in welchem Umfang eingelagert werden soll. Seitdem die Lösung produktiv ist, wurden jährliche Einsparungen in Millionenhöhe realisiert, hauptsächlich durch die Reduktion zu hoch geplanter Ersatzteilnachfrage.

Die Lösung kann nicht nur in der Automobilindustrie eingesetzt werden, sondern in jeder Branche, die mit hohen Ersatzteilbedarfen arbeitet. Zu nennen sind hier die Luftfahrtbranche, Kraftwerksausrüster, Maschinenproduzenten oder Rüstungsunternehmen. Sie alle haben langlebige Produkte im Sortiment, für die sie Ersatzteile mit hohem Verfügungsgrad für lange Zeit vorhalten müssen.

Teil einer umfassenden Lösung

Die Mittel- und Langfrist Ersatzteilprognose ist Teil eines IBM Services Offerings im Supply Chain Bereich. Unter anderem gibt es Assets und Projektansätze zur Inventar- und Safety Stock Optimierung, automatische Bestellbearbeitung, kurzfristige Demand Forecasts oder Supply Chain Risiko Evaluation.

www.ibm.de

Das könnte Sie auch Interessieren

Bild: Analog Devices GmbH
Bild: Analog Devices GmbH
Warum vorausschauende Wartung?

Warum vorausschauende Wartung?

Allein in Fabriken in den USA entstehen pro Jahr ungeplante Ausfallzeiten von 14 Millionen Stunden. Die Ursache dafür, Systemfehler, bescheren der Industrie Kosten in Milliardenhöhe. Um solche Szenarien zu verhindern,
nutzen Fabriken in der Regel einen teuren manuellen Ansatz: Experten sammeln Daten, um den Zustand der
Anlagen zu beurteilen. Auch kommen oft Sensorlösungen zum Einsatz, die jedoch nicht alle möglichen Ausfälle zuverlässig erkennen können. Mehr Potenzial versprechen Systemlösungen für die vorausschauende Wartung.

Bild: Roxon
Bild: Roxon
Online-Zustandsüberwachung für Gurtförderanlagen

Online-Zustandsüberwachung für Gurtförderanlagen

Schmersal stellt über seinen Systempartner Roxon eine vollautomatisierte Online-Zustandsüberwachung für Gurtförderanlagen vor: Der HX170 basiert auf einer optischen Zustandsüberwachung des Oberflächenprofils, wodurch alle möglichen Beschädigungen der Verbindungsstellen sowie Längsschlitze, Risse und Löcher an der Bandoberfläche erkannt werden sollen.

Bild: Fraunhofer-Institut IGD/©angkhan/stock.adobe.com
Bild: Fraunhofer-Institut IGD/©angkhan/stock.adobe.com
Risiken verringern: Fraunhofer-Software entwickelt FMEA weiter

Risiken verringern: Fraunhofer-Software entwickelt FMEA weiter

Ob autonomes Fahrzeug in der Intralogistik oder Werkzeugmaschine in der industriellen Fertigung: Fehler und Ausfälle einzelner Geräte und Komponenten sind nicht immer zu vermeiden. Deren Wahrscheinlichkeit einzuschätzen und den Aufbau technischer Systeme hinsichtlich ihrer Betriebs- und Prozesssicherheit zu verbessern, ist daher umso wichtiger. Mit proSvift entwickelten Forschende des Fraunhofer IGD ein neues Analysewerkzeug, das auf einer probabilistischen Fehlermöglichkeits- und Einflussanalyse (FMEA) basiert und intuitiv steuerbar ist. Anwender sollen so Produktionsausfälle, kritische Auswirkungen und Folgekosten reduzieren können.