KI-Studie des Fraunhofer IAO

KI-Studie des Fraunhofer IAO

Der nächste Schritt auf dem Weg zur Industrie 4.0

Die technologischen Rahmenbedingungen führen dazu, dass Firmen KI-Lösungen häufiger diskutieren als integrieren. In einer Studie hat das Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO untersucht, wo KI in Unternehmen zu finden ist und was sie dort leistet.

Bild: Fraunhofer-Institut f. Arbeitswirtschaft

Nach der Vernetzung der Produktion und echtzeitnaher Datenverfügbarkeit ist ein nächster logischer Schritt der Weiterentwicklung die Anwendung autonomer und lernender Systeme. Diese Anwendungen schwacher künstlicher Intelligenz (KI) fokussieren auf die Lösung konkreter Anwendungsprobleme auf Basis der Methoden aus der Mathematik und Informatik, wobei die entwickelten Systeme zur Selbstoptimierung fähig sind.

Wenige Anwendungen

Die vom Fraunhofer IAO im Jahr 2019 durchgeführte Studie ‚Künstliche Intelligenz in der Unternehmenspraxis‘ befragte mehr als 300 Unternehmen aller Branchen aus Deutschland, von denen rund zwei Drittel weniger als 2.500 Personen beschäftigen. Die Ergebnisse zeigen, dass sich bereits drei Viertel der Unternehmen mit dem Thema KI beschäftigen, was die Bedeutung der Zukunftstechnologie untermauert. Im Gegensatz dazu setzen allerdings erst 16 Prozent der befragten Unternehmen KI-Anwendungen im Betrieb ein. Die größten Anwendungsfelder für KI liegen dabei im Bereich der Daten- und Informationsextraktion sowie in den darauf aufbauenden Analysen und Prognosen. Auf dem Shopfloor finden sich daher aktuell vorrangig KI-Anwendungsfälle, die auf Maschinendaten basieren, um Prozesse effizienter zu gestalten. Die häufigsten Anwendungen liegen im Bereich Predictive Maintenance und Predictive Quality. Lösungen, welche den Menschen in seiner täglichen Arbeit individuell unterstützen und ihn assistieren, sind heute noch wenig verbreitet. Das Potenzial dafür ist jedoch riesig: Augmented-Intelligence-Lösungen können die menschlichen kognitiven Fähigkeiten erweitern und eine dynamische Interaktion zwischen Mitarbeitenden und technischen Systemen ermöglichen, indem sie Entscheidungsprozesse vorbereiten und die Ausführung von Tätigkeiten optimieren.

Vielfältiges Potenzial

Bei solchen unterstützenden KI-Systemen spielt der Autonomiegrad eine große Rolle. Systeme, die ihre Aufgaben vollständig autonom ausführen und dazu noch selbstständig neue Tätigkeitsfelder für sich erschließen, nutzen lediglich vier Prozent der Anwender. Ein Großteil der im Rahmen der Fraunhofer-Studie befragten Unternehmen gab an, dass ihre KI-Anwendung jedoch bereits teilweise autonome Entscheidungen trifft (53 Prozent), oder dass die KI den Menschen lediglich bei Entscheidungen unterstützt (28 Prozent). Um die Einbindung der Mitarbeitenden in solche Human-in-the-Loop-Systeme zielführend zu gestalten und auch die nötige Akzeptanz und das Vertrauen für eine erfolgreiche Nutzung zu erreichen, muss die KI für den Beschäftigten verständlich und nachvollziehbar sein. Laut der Studie verbessern sich für ein Unternehmen durch einen zielführenden Einsatz vor allem die Entscheidungsqualität und die Durchlauf- sowie Bearbeitungszeiten im Prozess. Ferner steigen die Kundenzufriedenheit und die Qualität der Arbeitsergebnisse durch KI-Anwendungen. Zusätzlich erkennen Unternehmen verstärkt Potenziale, durch KI nicht nur ihre Prozesse zu verbessern, sondern auch neue Produkte und Dienstleistungen zu entwickeln.

Seiten: 1 2Auf einer Seite lesen

Thematik: Allgemein
Ausgabe:

Das könnte Sie auch Interessieren

Bild: Flexco Europe GmbH
Bild: Flexco Europe GmbH
„Anlagen verdienen während der Wartung kein Geld“

„Anlagen verdienen während der Wartung kein Geld“

Ausgelöst durch den wachsenden E-Commerce müssen Bandförderanlagen immer mehr leisten, gleichzeitig steigen die Sicherheitsanforderungen. Der Wettbewerbsdruck bei den Versandhändlern und den KEP- (Kurier-, Express- und Paket-) Diensten nimmt damit enorm zu. Strategic Account Manager Tobias Haardt und Produkt Manager Harry Schiminski von Flexco Europe kennen die Herausforderungen ihrer Kunden und präsentierten auf der Logimat effiziente Lösungen.

Bild: Bachmann electronic GmbH / ©bill2499/stock.adobe.com
Bild: Bachmann electronic GmbH / ©bill2499/stock.adobe.com
Bachmann mit neuem Beratungsangebot für Condition Monitoring

Bachmann mit neuem Beratungsangebot für Condition Monitoring

Die Besitzer und Betreiber von Windenergieanlagen stehen zunehmend unter Druck, ihre Produktivität zu steigern, erschwingliche Energie zu liefern und höhere Renditen für Investoren zu erzielen. Die Informationen, die zur Optimierung der Wartung, für Kostensenkungen und die Reduzierung von Ausfallzeiten benötigt werden, sind in den standardisierten, täglichen Zustandsüberwachungsdaten ihrer Windkraftanlagen zu finden.

Bild: Sybit GmbH
Bild: Sybit GmbH
Field Service Management als Innovationsfaktor

Field Service Management als Innovationsfaktor

Falsche Ersatzteile, lange Wartezeiten, ineffiziente Planung. Im Field Service kann einiges schief gehen. Das große Problem: Die ganze Marke leidet, wenn Kunden nicht zufrieden sind mit einem Technikereinsatz. Beim Sybit Expert Talk Service diskutierten drei Experten vor über 50 Gästen, wie man es besser macht – und den Kundenservice von der Kostenstelle in einen Umsatztreiber verwandeln kann.

Bild: Coresystems AG
Bild: Coresystems AG
KI-gestützte Datenanalyselösung

KI-gestützte Datenanalyselösung

Coresystems hat das Produkt InsightLoop neu auf den Markt gebracht. Dabei handelt es sich um eine KI-gestützte Datenanalyselösung, die es Unternehmen ermöglichen soll, tiefe Einblicke in ihre Aussendiensttätigkeiten zu gewinnen um so die Effizienz und Kundenzufriedenheit steigern zu können.

Bild: ABB AG
Bild: ABB AG
Den Gerätestatus genau kennen

Den Gerätestatus genau kennen

Unternehmen werden zunehmend digitaler. Viele versprechen sich von der Digitalisierung, ihre unterschiedlichen Herausforderungen schneller, einfacher und häufig auch besser lösen zu können. Dabei macht es Sinn, besonders Antriebe transparent zu machen, die eine Schlüsselrolle in der Produktion spielen.