Fehleranalyse soll Erstläuferquote verbessern

Machine Learning hilft, Muster in Datensätzen zu finden.
Machine Learning hilft, Muster in Datensätzen zu finden.Bild: Dürr Systems AG

Die Analysesoftware Dxqplant.Analytics von Dürr soll Betreiber von Lackieranlagen befähigen, die Qualität und Effektivität ihrer Produktion zu verbessern. Die Software soll systematische Fehlermuster und deren Ursache früh erkennen, etwa um die Behebung zu beschleunigen. Die ML-getriebene Anwendung kann im Zusammenspiel mit dem Modul Advanced Analytics eine große Datenmenge für Analysen nutzen, um zu erkennen, ob ein Fehler einmalig oder systematisch auftritt, beispielsweise wiederkehrende Qualitätsmängel bei bestimmten Farben. Weitere Analyse können den verursachenden Prozessschritt identifizieren. Zusammen sollen Detektion und Ursachenanalyse ermöglichen, Fehler künftig zu vermeiden und mehr Erstläufer zu produzieren.

www.durr.com

Das könnte Sie auch Interessieren

Bild: Analog Devices GmbH
Bild: Analog Devices GmbH
Warum vorausschauende Wartung?

Warum vorausschauende Wartung?

Allein in Fabriken in den USA entstehen pro Jahr ungeplante Ausfallzeiten von 14 Millionen Stunden. Die Ursache dafür, Systemfehler, bescheren der Industrie Kosten in Milliardenhöhe. Um solche Szenarien zu verhindern,
nutzen Fabriken in der Regel einen teuren manuellen Ansatz: Experten sammeln Daten, um den Zustand der
Anlagen zu beurteilen. Auch kommen oft Sensorlösungen zum Einsatz, die jedoch nicht alle möglichen Ausfälle zuverlässig erkennen können. Mehr Potenzial versprechen Systemlösungen für die vorausschauende Wartung.

Bild: Roxon
Bild: Roxon
Online-Zustandsüberwachung für Gurtförderanlagen

Online-Zustandsüberwachung für Gurtförderanlagen

Schmersal stellt über seinen Systempartner Roxon eine vollautomatisierte Online-Zustandsüberwachung für Gurtförderanlagen vor: Der HX170 basiert auf einer optischen Zustandsüberwachung des Oberflächenprofils, wodurch alle möglichen Beschädigungen der Verbindungsstellen sowie Längsschlitze, Risse und Löcher an der Bandoberfläche erkannt werden sollen.

Bild: Fraunhofer-Institut IGD/©angkhan/stock.adobe.com
Bild: Fraunhofer-Institut IGD/©angkhan/stock.adobe.com
Risiken verringern: Fraunhofer-Software entwickelt FMEA weiter

Risiken verringern: Fraunhofer-Software entwickelt FMEA weiter

Ob autonomes Fahrzeug in der Intralogistik oder Werkzeugmaschine in der industriellen Fertigung: Fehler und Ausfälle einzelner Geräte und Komponenten sind nicht immer zu vermeiden. Deren Wahrscheinlichkeit einzuschätzen und den Aufbau technischer Systeme hinsichtlich ihrer Betriebs- und Prozesssicherheit zu verbessern, ist daher umso wichtiger. Mit proSvift entwickelten Forschende des Fraunhofer IGD ein neues Analysewerkzeug, das auf einer probabilistischen Fehlermöglichkeits- und Einflussanalyse (FMEA) basiert und intuitiv steuerbar ist. Anwender sollen so Produktionsausfälle, kritische Auswirkungen und Folgekosten reduzieren können.