Dez 20, 2019 | Allgemein

Deutschland ist führend bei der Einführung von KI in der Fertigungsindustrie
Deutschland ist führend bei der Einführung von KI in der Fertigungsindustrie Eine neue Studie des Capgemini Research Institute zeigt, dass Europa und hier speziell Deutschland federführend beim Einsatz von künstlicher Intelligenz (KI) in Produktionsprozessen ist. 51 Prozent der größten global aufgestellten Fertigungsunternehmen in Europa implementieren mindestens einen KI-Anwendungsfall. Hersteller können sich bei der Einführung von […]

Deutschland ist führend bei der Einführung von KI in der Fertigungsindustrie

Eine neue Studie des Capgemini Research Institute zeigt, dass Europa und hier speziell Deutschland federführend beim Einsatz von künstlicher Intelligenz (KI) in Produktionsprozessen ist. 51 Prozent der größten global aufgestellten Fertigungsunternehmen in Europa implementieren mindestens einen KI-Anwendungsfall. Hersteller können sich bei der Einführung von KI-Elementen im Produktionsablauf auf drei Einsatzszenarien konzentrieren: intelligente Wartung, Produktqualitätskontrolle und Bedarfsplanung, so ein Ergebnis der Studie nach der Analyse von 22 möglichen KI-Anwendungen.

(Bild: Capgemini Service SAS)

Die Capgemini-Studie ‚Scaling AI in Manufacturing Operations: A practitioners‘ perspective‘ analysiert, wie KI-Anwendungen implementiert werden und untersucht hierzu weltweit 300 Top-Unternehmen aus den vier Sektoren industrielle Fertigung, Automobil, Konsumgüter sowie Luftfahrt und Verteidigung. Die Ergebnisse bestätigen das enorme Potenzial, das sich für die Branche durch KI hinsichtlich geringerer Betriebskosten, verbesserter Produktivität und höherer Qualität ergibt. Die weltweit führenden Produktionsunternehmen in Deutschland (69 Prozent), Frankreich (47 Prozent) und Großbritannien (33 Prozent) sind laut der Studie die Vorreiter beim Einsatz von KI-Elementen im Fertigungsbereich.

„Die produzierende Industrie stellt in Deutschland einen Grundpfeiler der Wirtschaft dar. Um wettbewerbsfähig zu bleiben, haben sich die hiesigen Fertigungsunternehmen schon frühzeitig damit auseinandergesetzt, KI in ihre Wertschöpfungskette einzufügen. Die Integration der KI muss allerdings tiefer gehen, denn trotz vieler KI-Konzepte fehlt es den meisten Unternehmen noch an Kompetenz und Erfahrung, diese in den Produktivbetrieb zu überführen. Die Fähigkeit, wirtschaftliche Fragen in algorithmische Aufgaben zu übersetzen, sie auf einer zentralen KI-Plattform in Echtzeit zu verarbeiten und deren Antwort kontinuierlich für Entscheidungen über Standorte hinweg im Betrieb zu nutzen, wird künftig entscheidend sein. Dadurch können Unternehmen die Vorteile der KI in Wartung, Qualitätsmanagement und Planung bestmöglich nutzen“, betont Jochen Bechtold, Head of Manufacturing und Life Sciences bei Capgemini in Deutschland.

Nutzung von KI macht einen Unterschied in der gesamten Wertschöpfungskette

Führende Unternehmen nutzen KI über mehrere Produktionsbereiche hinweg zu ihrem Vorteil. Ein Beispiel dafür ist das Lebensmittelunternehmen Danone, das Prognosefehler um 20 Prozent reduzieren und Umsatzeinbußen um 30 Prozent vermeiden konnte, indem es maschinelles Lernen zur Vorhersage von Nachfrageschwankungen einsetzt. Auch der Reifenhersteller Bridgestone, hat durch die Einführung eines neuen Montagesystems mit automatisierter Qualitätskontrolle die Einheitlichkeit der Produkte um über 15 Prozent verbessert.

Hersteller konzentrieren sich auf drei KI-Hauptanwendungsfälle

Der Studie zufolge starten die Hersteller in der Produktion mit drei KI-Anwendungsfällen (von insgesamt 22 in der Studie identifizierten). Diese weisen eine optimale Kombination mehrerer Merkmale auf und lassen sie so zu einem idealen Ausgangspunkt werden. Es zählen dazu ein klarer Geschäftswert, relative einfache Implementierung, Verfügbarkeit von Daten und KI-Kenntnissen. Die von Capgemini befragten Führungskräfte erläuterten, dass man in den Bereichen Produktqualitätskontrolle, intelligente Wartung und Bedarfsplanung KI am einfachsten implementieren kann und sich hier die beste Rentabilität ergibt. General Motors (GM) hat z.B. ein System entwickelt, das Anzeichen von robotischen Fehler erkennt, bevor sie auftreten. Dies hilft GM, Kosten für ungeplante Ausfälle zu vermeiden, die bis zu 20.000 US-Dollar pro Minute Ausfallzeit betragen können. Während es einen Konsens darüber gibt, welche Anwendungsfälle am besten geeignet sind, um mit KI in der Produktion zu beginnen, weist die Studie auch auf die Herausforderung hin, über die ersten Implementierungen hinaus zu skalieren und dann systematisch das Potenzial der KI weiter zu nutzen.

www.capgemini.com/de-de
Capgemini Service SAS

Charts der Woche

Wenn der Hacker die SPS übernimmt

Mehr als die Hälfte der deutschen Industrieunternehmen hat durch Cyber-Attacken finanzielle Schäden erlitten, so eine Studie des VDMA. Dass die Zahl solcher Angriffe abnimmt, ist nicht in Sicht. Daher wird es immer wichtiger, Industrial Networks und Operational Technology (OT)-Umgebungen zu schützen. Dabei helfen Ansätze, die auch beim Schutz von Büronetzwerken Verwendung finden.

Datenschutzbedenken bremsen IoT-Aktivitäten

Der TÜV Süd hat im Rahmen einer Studie ermittelt, dass Unternehmen zwar zunehmend vom Internet of Things (IoT) profitieren, Bedenken zu Datenschutz und IT-Sicherheit bremsen breiter angelegte IoT-Aktivitäten jedoch aus und fallen sogar noch stärker ins Gewicht als ein knappes Budget.

Produkthighlights des Monats

Das könnte Sie auch interessieren

Familienzuwachs beim digitalen Zwilling

Der Digital Twin und die virtuelle Inbetriebnahme erhalten in modernen Produktionsumgebungen immer mehr Gewicht. Dass dafür nicht nur Software, sondern auch die richtige Hardware nötig ist, will das Unternehmen Machineering mit der FieldBox 1 unterstreichen. Jetzt wurde diese Hardware-Basis für moderne Simulation in zwei unterschiedlichen Leistungsvarianten vorgestellt.

mehr lesen

Künstliche Intelligenz optimiert Predictive Maintenance

Mit dem Ziel, genauere und schnellere Prognosen in der vorausschauenden Wartung (Predictive Maintenance) zu erstellen, integriert Endian künstliche Intelligenz (KI) in seine IIoT-Lösung Endian Connect Platform: Über einen Knowledge Graph werden Informationen aus unterschiedlichen Datenbanken zusammengeführt, um möglichst exakte Prognosen über zukünftige Maschinenzustände zu berechnen.

mehr lesen

Datenanalytik für den optimalen Gebäudebetrieb

In jeder Sekunde erzeugen Aktoren, Sensoren, Zähler, Geräte, Anlagen und Systeme der Gebäudetechnik riesige Mengen an Daten. Bisher wurde nur ein kleiner Teil davon für Optimierungen im Gebäudebetrieb genutzt. Mit der zunehmenden Digitalisierung ist es möglich, Gebäude mit Hilfe dieser Daten zum Sprechen zu bringen. Für Betreiber und Facility-Manager ergeben sich damit enorme Optimierungschancen. Voraussetzung ist, dass sie verstehen, was das Gebäude mitzuteilen hat. Hier bieten digitale Services wie technisches Monitoring die notwendige Unterstützung.

mehr lesen
Wartung der Sicherheitsbeleuchtung per App

Wartung der Sicherheitsbeleuchtung per App

Über eine einfach zu bedienende App kann durch das NaveoPro-System von ABB die komplette Sicherheitsbeleuchtungsinstallation eingerichtet, gewartet und gesteuert werden. Der dadurch gewonnene Echtzeit-Überblick über alle Systeme spart Zeit, ermöglicht eine bessere Wartungsplanung und
erhöht die Sicherheit im Gebäude.

mehr lesen

Elektronik für verteilte KI zur sensorbasierten Prozess- und Zustandskontrolle

Das Bundesministerium für Bildung und Forschung (BMBF) investiert aktiv in die Entwicklung neuer Elektroniksysteme und fördert dabei Verbundforschungsprojekte, die signifikant zur Umsetzung des Zukunftsprojekts Industrie 4.0 beitragen. Ziel des vom BMBF geförderten Gesamtprojekts KI-Predict ist die Nutzung von Methoden der künstlichen Intelligenz (KI) auf unterschiedlichen Ebenen des Produktionsprozesses als Basis für die zustandsbasierte, prädiktive Wartung von Produktionsanlagen und die Überwachung der Produktqualität direkt im Produktionsprozess. An diesem Projekt sind insgesamt sieben Partner beteiligt: unter ihnen das Fraunhofer-Institut für Integrierte Schaltungen IIS mit der Entwicklung eines Sensor-Interface ASICs. Das Besondere daran: Es ist auf Sensoren für Condition-Monitoring und Echtzeit-Prozesskontrolle abgestimmt und ermöglicht eine energieeffiziente Feature-Extraction und Signalverarbeitung direkt am Sensor.

Kaefer übernimmt Wood Group In­dus­tri­al Ser­vices

Mit der Über­nah­me des In­dus­trie­dienst­leis­tungs­ge­schäfts (Wood Group In­dus­tri­al Ser­vices) von der John Wood Group PLC, kann die Kaefer-Grup­pe ihre Markt­po­si­ti­on in Groß­bri­tan­ni­en und Ir­land stärken.

Knowledge Day in Blaubeuren

Auf dem Knowledge Day in Blaubeuren erhalten Teilnehmer unter anderem praxisorientierte Einblicke in die Themen Predictive Maintenance und MES.