Wert und Nutzen der vorausschauenden Wartung
Welchen Wert haben digitale Lösungen zur vorbeugenden Wartung? Bzw. wie teuer sind heutzutage Ausfallzeiten aufgrund von Geräteausfällen? Maschinenhersteller und auch Betreiber wünschen sich zunehmend mehr Einblick in den Maschinenzustand und insbesondere in den vorhergesagten Maschinenzustand.
Bild: Lean.IQ

In den letzten Jahren hat sich die Technologie zu intelligent vernetzten Maschinen stark vereinfacht und konkrete Anwendungsfälle beweisen bereits in zahlreichen Industriebranchen, dass sich durch vorausschauende Wartung Betriebskosten senken lassen, und die Produkt- und Prozessqualität an Nachhaltigkeit gewinnt. Digitalisierung bedient also genau die Anforderungen um im globalen Wettbewerb auch in Zukunft weiter vorne mitspielen zu können.

Vorteile der vorausschauenden Wartung

Kunden suchen nach smarten, digitalen Produkten, die ihr Programm zur vorbeugenden Wartung mit folgenden Vorteilen unterstützen:

Teile-Kosten und die Investitionsausgaben reduzieren. Durch die Reduzierung der Service-Kosten und die Erhöhung der Gesamtlebensdauer einer Maschine werden die langfristigen Investitionsausgaben reduziert. Darüber hinaus ist aufgrund des gestiegenen Vertrauens in den Betriebszustand ein reduzierter Ersatzteil-Bestand möglich.

Betriebliche Effizienz steigern. Wenn die Maschinen zwischen Service-Intervallen länger in Betrieb sind und zukünftig auftretende Probleme mit hoher Wahrscheinlichkeit voraussagen lassen, kann die betriebliche Gesamteffizienz verbessert werden. Das führt zu einem besseren Geschäftsergebnis und einem Wettbewerbsvorteil.

Laufende Compliance-Kosten verringern. Korrektive und vorbeugende Wartung ist aus arbeitsrechtlicher Sicht kostspielig. Die Verbesserung der Transparenz von Problemen, bevor sie auftreten, kann erhebliche Auswirkungen auf die Senkung der damit verbundenen laufenden Compliance-Kosten haben.

Produkt- und Prozessqualität steigern. Da Maschinen effizienter und mit höherer Qualität und Lebensdauer arbeiten, steigt auch die daraus resultierende Qualität und Effektivität der Prozesse, die von der Maschinenleistung abhängen.

Dies sind nur einige der Vorteile von ‚Predictive Analytics‘ im Rahmen eines Programms zur vorbeugenden Wartung haben kann.

Durch Hinzufügen weiterer Sensoren zu Geräten und in Kombination mit einer IoT-Plattform, die große Mengen von Maschinendaten von mehreren Maschinentypen, Standorten und Anwendungen erfassen, verarbeiten und visualisieren kann, können die folgenden zusätzlichen Vorteile erzielt werden:

Echtzeitüberwachung von Maschinen. Lokale Analysen auf Sensor- oder Geräteebene, mit einem Down-Sampling hochfrequenter Sensorwerte und Aggregation in der Edge zur Reduzierung von Latenz-Zeiten, Bandbreite und Speicherkosten in der Cloud, bei gleichzeitiger Transparenz zur Maschinenleistung.

Stream-Analytics. Daten analysieren, transformieren und nach Mustern sowie Trends untersuchen, die auf bestimmte Problembereiche hinweisen, können Fehler in der Maschine sehr schnell diagnostizieren. Dazu gehören die Anzeige des Maschinenzustands, Hinweise für die vorausschauende Wartung und der Servicebereitstellung.

Flexible Optionen zur Datenvisualisierung. Eine IoT-Plattform erlaubt eine für den jeweiligen Nutzer (und seine Rolle) angepasste Visualisierung. Dies ist insbesondere für Hersteller vernetzter Industrieanlagen von Interesse, die ihren Endkunden ein spezifisches Marken-Erlebnis bieten möchten.

Analyse für mehrere Maschinen, Regionen und Anwendungen. Durch das Sammeln von Daten von mehreren Maschinentypen an mehreren Standorten und in mehreren Anwendungen kann eine Vielzahl von Daten mithilfe von Big-Data-Tools gesammelt und analysiert werden, um Trends zu ermitteln, die möglicherweise nicht erkennbar sind, wenn nur einzelne Maschinen betrachtet werden.

Datenanalyse: Ein Reifegradmodell

In den letzten Jahren sind zunehmend digitale Datenmodelle, vor allem für rotierende Maschinen wie z.B. Pumpen und Motoren, auf den Markt gekommen. Dennoch steht die Branche im erweiterten Sinne der Datenanalyse noch am Anfang. Infolgedessen haben Unternehmen immer noch eine bedeutende Chance zur eigenen Differenzierung vom Wettbewerb, indem sie pragmatische Lösungen zur Datenanalyse entwickeln und einsetzen. Zudem hat sich gezeigt, dass speziell die Unternehmen besonders erfolgreich sind, die in kleinen Entwicklungsschritten vorgehen und so kontinuierlich ihren Wissensfortschritt aufbauen. Dieser Prozess beginnt in allen Fällen mit der grundlegenden Konnektivität und der Kombination aus bestehendem Wissen von Mitarbeitern zu Maschinen bzw. Komponenten. Im nächsten Schritt verknüpft man das Wissen mit Erkenntnissen darüber, was genau zu messen ist. Nun kann man versuchen Fragen zu beantworten wie z.B.: „Wie bestimmen wir automatisch, wann ein Aufzug mit einer Wahrscheinlichkeit von 60% innerhalb von 90 Tagen ausfällt?“

Erst nachdem diese durch Intuition getriebenen Hypothesen entwickelt wurden, kann die Datenanalyse auf reale Maschinendaten angewendet werden, um die sie im Laufe einer bestimmten Periode zu beweisen oder zu widerlegen. Die Kombination aus menschlicher Eingabe und intelligenter Automatisierung ist dabei eine Möglichkeit, einen Maschinenausfall vorherzusagen. Alternativ stehen heute sogenannte „Unsupervised Machine-Learning“ Algorithmen zur Verfügung, die selbständig aus verschiedenen Daten entsprechende Ableitungen treffen. Meist kann bereits nach einer kurzen automatischen Trainingsphase des Algorithmus in den operativen Betrieb gewechselt werden. Die Wahrscheinlichkeiten einer korrekten Voraussage sind in solchen Systemen >90%.

Best Practices führende Hersteller

Nachfolgend noch eine Reihe von Best Practices, einiger führende Nutzer von Predictive-Analytics-Technologien:

Seiten: 1 2Auf einer Seite lesen

Lean.IQ
http://www.lean-iq.com

Das könnte Sie auch Interessieren

Bild: Siemens AG
Bild: Siemens AG
Zero Trust stärkt Zellenschutz

Zero Trust stärkt Zellenschutz

Homeoffice und Fernzugriff – was viele Hersteller IT-seitig bereits umsetzen, weckt auf Werks- und Konstruktionsebene noch oft Begehrlichkeiten. Doch auch hier können Aufgaben extern erledigt werden. Für solche Projekte kooperieren Siemens und Zscaler Inc., um einen duchgängigen Zero Trust-Sicherheitsansatz für OT/IT zu ermöglichen.

Bild: 5thIndustry GmbH / Wandelbots
Bild: 5thIndustry GmbH / Wandelbots
5thIndustry und Wandelbots kombinieren Softwareentwicklung

5thIndustry und Wandelbots kombinieren Softwareentwicklung

5thIndustry und Wandelbots haben ihre Softwareentwicklungen im Bereich der Roboterwartung kombiniert, um eine durchgängige Lösung für Industrieunternehmen ermöglichen zu können. Wandelbots lieferte dafür ihren agnostischen ‚Robot Fleet Monitor‘, mit dem Anwender auf roboterspezifische digitale Zwillinge, Visualisierungen und Analysen zugreifen können, um Probleme zu identifizieren und die Produktivität jeder Roboterzelle zu steigern. Dies kombinierte 5thIndustry mit ihrer 5i.Maintenance App, welche die Aufgabe der Roboterwartung digitalisiert und in Echtzeit Statusmeldungen an die Produktionsmitarbeiter liefert. Das Ergebnis: Eine One-Stop-Lösung, mit der die gesamte Flotte von 6-achsigen Industrierobotern von einem Ort aus überwacht werden kann.

Vibrometer stellt Echtzeitdaten dar

Ein neues Feature des Laser-Vibrometers VibroGo von Polytec sorgt dafür, dass das tragbare Gerät Messdaten direkt auf dem Gerät speichern und diese live und zur nachträglichen Analyse auf dem Display oder per Webbrowser anzeigen kann.

Robuste Zustandssensoren

Die Erfassung von Maschinenbetriebszuständen, wie Schwingungen und Drücke, sowie die Auswertung dieser Messdaten, ermöglichen die Erkennung von Unregelmäßigkeiten und entstehenden Schäden.

MainDays in Berlin

Zur 22. MainDays-Jahrestagung treffen sich am 23. und 24. November Verantwortliche aus Instandhaltung und technischem Service in Berlin.

BGHM verleiht Gütesiegel ‚Sicher mit System‘ an Cleantaxx

Eine hohe Wertstellung des Arbeitsschutzes, eine ganzheitliche systematische Betrachtungsweise sowie ein auf konsequente Umsetzung ausgerichteter Führungsstil: Das Langenhagener Unternehmen Cleantaxx erhält für sein Arbeitsschutzmanagementsystem das Gütesiegel ‚Sicher mit System‘ der Berufsgenossenschaft Holz und Metall (BGHM).

Wenn die Maschinen stillstehen

Eine Senseye-Umfrage unter großen Industrieunternehmen hat ergeben, dass große Werke 27 Stunden pro Monat aufgrund von Machinenausfällen verlieren und jede Stunde ungeplanten Stillstandes rund 532.000US$ (ca. 450.000€) kostet. Der Verlust wird auf 3,3 Millionen Produktionsstunden geschätzt. Das entspricht 864Mrd.US$ (ca. 730Mrd.€) pro Jahr bei den Fortune Global 500 Industrieunternehmen.