IIoT-basierte vorausschauende Instandhaltung
Verhindern, dass die Maschine stehen bleibt
Die Digitalisierung von Fertigungsprozessen hat die Vernetzung der damit verbundenen Maschinen, Produktionsanlagen und Werkzeugen zur Folge. Das wirkt sich auch auf die Instandhaltung aus. Während in vielen Bereichen die präventive, vorbeugende Instandhaltung bis heute dominiert, verbreiten sich durch günstiger werdende Technologien zunehmend auch vorausschauende - sogenannte Predictive-Maintenance-Konzepte. Maschinenbauer, die ihren Kunden auf Basis der neuen Wartungsansätze einen Mehrwert bieten möchten, müssen dafür jedoch auf datenbasierte Geschäftsmodelle umsteigen. Diese nutzen integrierte IIoT-Plattformen, um die Daten von vernetzten Maschinen und Anlagen zu erfassen und zu analysieren.
Anbieter wie Senseforce bieten IIoT-Plattformen auf Basis von Low Code an, die die Entwicklung von Prozessen mit visuellen Benutzeroberflächen unterstützen. Dadurch können auch Anwender mit einem geringen IT-Wissen die Zustandsdaten ihrer Maschinen und Anlagen auswerten. – Bild: Senseforce GmbH

IIoT-Plattformen ermöglichen ein kontinuierliches 24/7-Monitoring von Maschinen und Anlagen in Echtzeit. Intelligente, in Fertigungsmaschinen integrierte Sensoren sammeln dabei die während der Produktion anfallenden Daten und senden sie an eine cloudbasierte IIoT-Wartungs-Plattform. Diese bereitet sie auf und ermöglicht so geschulten Anwendern aus den erfassten Geräuschen, Drehzahlen oder Temperaturen Rückschlüsse auf in der Anlage vorhandene Fehler zu ziehen. Im Servicefall können Techniker mithilfe der gesammelten Anlagendaten zielgerichtet an der Fehlerbeseitigung arbeiten. Über ein mit historischen Daten angereichertes Maschinenmodell lassen sich Wartungsereignisse vorwegnehmen und unter automatischer Veränderung von Prozessparametern sogar bis zu einem optimalen Zeitpunkt verzögen. Die Folge sind reduzierte Wartungszyklen- und -Zeiten.

Automatische Alarme bei Überschreiten des Grenzwerts

Über das Internet lassen sich unterschiedlichste Anlagen und Maschinen, angefangen von Produktionsanlagen, Windrädern oder Flugzeugturbinen, bis hin zu Druckmaschinen, Kraftfahrzeugen oder Kränen mittels Predictive Maintenance weltweit vorausschauend überwachen und warten. Die Kommunikation startet normalerweise in den vernetzten Anlagen, wo Sensoren, Messstationen oder Sonden Zustände wie Temperatur, Schwingungen, Auslastung oder Verschleiß erfassen und übermitteln. Für die Auswertung legen Produkt- und Serviceexperten bestimmte Grenzwerte fest, die weder unter- noch überschritten werden dürfen. Ist das doch der Fall, löst das System automatisch einen Alarm aus und sendet eine Benachrichtigung, oft per E-Mail oder SMS. Bei einem Kranhersteller werden z.B. Grenzwerte für die Windstärke definiert. Versucht der Kranführer ab einer kritischen Windstärke oberhalb des Grenzwertes trotzdem noch ein Schiff zu beladen, löst dies einen Alarm aus, der automatisch den verantwortlichen Kranbetreiber erreicht.

Lebensdauerbestimmung durch akustische Muster

Eine bei Predictive Maintenance häufig verwendete Analysemethode ist die sogenannte akustische Mustererkennung. Dabei lässt sich aufgrund von Änderungen innerhalb eines akustischen Musters die Lebensdauer eines bestimmten Bauteils oder einer Komponente, etwa eines Ventils, bestimmen. Mittels künstlicher Intelligenz (KI) und Machine Learning werden komplexen Messwerten Bedeutungen zugeordnet, auf deren Basis Data Scientists Einschätzungen abgegeben können. So lässt sich z.B. aus den Vibrationen eines Tisches in einer CNC-Maschine das aktuelle Verschleißstadium des Bohrers herauslesen. Ist er neuwertig, bereits abgenutzt oder schon verschlissen? Auch präzisere Vorhersagen sind möglich wie: „Der Bohrer hat 15 Prozent seiner Lebenszeit erreicht.“

Eine leistungsfähige Produktion ist auf die Funktionalität ihrer Anlagen und technischen Systeme angewiesen. Als ideal gilt eine technische Verfügbarkeit von mindestens 95 Prozent der möglichen Betriebszeit. Im Rahmen vorausschauender Instandhaltungsmaßnahmen lässt sich in die Maschine eine automatische Erkennung häufig auftretender Fehler implementieren. So etwa die Identifikation von Geberfehlern bei Sensoren oder Abweichungen in der Maschinen-Kalibrierung. Durch den datengestützten, kontinuierlichen und stets aktuellen Einblick in die verwendete Anlage lassen sich Verbesserungspotenziale, z.B. über den Vergleich mit einem digitalen Modell, frühzeitig erkennen und umsetzen und die Verfügbarkeit der Maschine steigern.

Anbieter wie Senseforce bieten IIoT-Plattformen auf Basis von Low Code an, die die Entwicklung von Prozessen mit visuellen Benutzeroberflächen unterstützen. Dadurch können auch Anwender mit einem geringen IT-Wissen die Zustandsdaten ihrer Maschinen und Anlagen auswerten. – Bild: Senseforce GmbH

IIoT-Plattformen müssen in unterschiedlichste IT-Systeme integrierbar sein

Um jedoch die Produktionsprozesse zu digitalisieren und angemessen zu verwalten, bedarf es geeigneter IIoT-Plattformen, die Anwendern einen direkten, möglichst unkomplizierten Zugang zu den Betriebs- und Zustandsdaten einer Anlage ermöglichen. Damit das funktioniert, müssen sie nahtlos in die IT-Systeme unterschiedlichster Hersteller integrierbar sein. Moderne IIoT-Plattformen stellen deswegen eine standardisierte API zur Verfügung, über die Anwender Zugang zu den Maschinendaten und Analyseergebnisse erhalten. Vor allem REST- oder GraphQL-basierte APIs haben sich in diesem Zusammenhang bewährt.

Je erfolgreicher eine IIoT-Anwendungen ist, desto größere Datenmengen fallen im Laufe der Zeit zur Verarbeitung an. Plattformen, die auf das Management immer größerer Datenmengen nicht eingerichtet sind, werden schnell an ihre Grenzen stoßen. Unternehmen sollten deshalb bei der Anschaffung einer Plattform auch auf ihre Skalierbarkeit achten.  So müssen sich ihre Services – vom Messaging-, über den Datenbank- bis hin zum API-Service – mehrfach parallel ausführen lassen, damit eine nahtlose Aufstockung (oder Reduktion) von Ressourcen möglich ist.

Ohne Daten wäre IIoT nicht möglich. Ohne geschulte Mitarbeiter, die sich mit der Handhabung und Analyse von Daten auskennen, aber auch nicht. Fachpersonal wie Datenanalysten oder Data Scientists sind heutzutage in mittelständischen Unternehmen viel zu selten anzutreffen, bzw. oft gar nicht vorhanden. Ohne Mitarbeiter mit qualifizierter Datenexpertise wird es jedoch für Unternehmen schwer werden, auf Basis ihrer IIoT-Plattform eine Wertschöpfung zu erzielen.

Low-Code-Plattformen als Gamechanger

Aus diesem Grund bieten immer mehr Anbieter IIoT-Plattformen auf Basis von Low Code an. Anstatt klassische textbasierte Programmiersprachen zu verwenden, unterstützen Low-Code-Plattformen die Entwicklung von Prozessen mit visuellen Benutzeroberflächen und anderen grafischen Modellierungsverfahren. Dadurch wird es für Anwender, die zwar über eine große Maschinen-Expertise, aber nur über ein geringes IT-Wissen verfügen, möglich, ihre Anwendungen und Apps selbst zu konfigurieren und die Zustandsdaten ihrer Maschinen und Anlagen ohne professionelles Programmierwissen eigenständig auswerten. Predictive Maintenance auf Basis von Low Code könnte sich damit für den Maschinenbau als ein echter Gamechanger erweisen.

Senseforce GmbH

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Anzeige

Bild: Althen GmbH Mess- und Sensortechnik
Bild: Althen GmbH Mess- und Sensortechnik
Auf Fehlersuche 
im Führerstand

Auf Fehlersuche im Führerstand

Elektrische Lokomotiven sind mit Überspannungsableitern ausgestattet, die wie Blitzableiter funktionieren und die Instrumente vor Schäden durch plötzliche Überspannung schützen. Was aber, wenn diese Überspannungsableiter aus ungeklärten Gründen nicht zuverlässig funktionieren? Meinke Energy bietet Messdienstleistungen an, um Fehlern auf den Grund zu gehen und verlässt sich dabei auf die Datenerfassung mit den Datenloggern von Althen.

Bild: ©Gorodenkoff/stock.adobe.com
Bild: ©Gorodenkoff/stock.adobe.com
Maschinensicherheit und 
Arbeitsschutz gewährleisten

Maschinensicherheit und Arbeitsschutz gewährleisten

Technische Abteilungen, Fachkräfte für Arbeitssicherheit sowie Bauleiter sind nicht nur in der Verantwortung, die reibungslose Funktionalität all ihrer Werkzeuge, Arbeitsmittel, Fahrzeuge, Maschinen und Anlagen zu gewährleisten. Der Gesetzgeber sieht strenge Richtlinien vor, die regelmäßige Prüfungen, Wartungsauflagen und die Prüfintervalle definieren. Das Unternehmen muss so den Arbeitsschutz gewährleisten. Doch Wartungen sind oft mit hohem Personal- und Organisationsaufwand verbunden.

Bild: U.I. Lapp GmbH
Bild: U.I. Lapp GmbH
Sichere Smart Factory

Sichere Smart Factory

Ungeplante Maschinenstillstände können in der digitalen Fabrik extreme Kosten verursachen. Eine vorausschauende Wartung hilft hier vorzubeugen. Mit dem Etherline Guard von Lapp lässt sich in ethernetbasierten Netzwerken der Automatisierungstechnik die Lebensdauer von Datenleitungen überwachen.

Anzeige

Anzeige

Anzeige