Elektronik für verteilte KI zur sensorbasierten Prozess- und Zustandskontrolle
Das Bundesministerium für Bildung und Forschung (BMBF) investiert aktiv in die Entwicklung neuer Elektroniksysteme und fördert dabei Verbundforschungsprojekte, die signifikant zur Umsetzung des Zukunftsprojekts Industrie 4.0 beitragen. Ziel des vom BMBF geförderten Gesamtprojekts KI-Predict ist die Nutzung von Methoden der künstlichen Intelligenz (KI) auf unterschiedlichen Ebenen des Produktionsprozesses als Basis für die zustandsbasierte, prädiktive Wartung von Produktionsanlagen und die Überwachung der Produktqualität direkt im Produktionsprozess. An diesem Projekt sind insgesamt sieben Partner beteiligt: unter ihnen das Fraunhofer-Institut für Integrierte Schaltungen IIS mit der Entwicklung eines Sensor-Interface ASICs. Das Besondere daran: Es ist auf Sensoren für Condition-Monitoring und Echtzeit-Prozesskontrolle abgestimmt und ermöglicht eine energieeffiziente Feature-Extraction und Signalverarbeitung direkt am Sensor.

Mikroelektronik, kombiniert mit Sensorik und eingebetteter Software, erfasst und verarbeitet Prozessdaten in Industrieanlagen. Dies ermöglicht die Digitalisierung von Produktionsprozessen und Betriebsabläufen in der Industrie 4.0. Heute verfügbare Elektroniksysteme zur Datenerfassung und Signalverarbeitung, insbesondere Signalprozessoren (DSP) oder programmierbare Logik (FPGA), sind jedoch für diesen Anwendungsbereich nicht optimiert und folglich im Vergleich zu den zu überwachenden Komponenten teuer.

Das Projekt KI-Predict adressiert genau dieses Problem in einem ganzheitlichen Ansatz. Die Kombination neuer KI-Methoden mit dazu optimierter, integrierter Hardware ermöglicht eine intelligente Prozessüberwachung mit direkter Signalverarbeitung und Feature-Extraktion am Ort des Geschehens. Diese neue Qualität der Datenverarbeitung direkt am Sensor ermöglicht eine sichere, dezentrale Analyse- und Prognosefähigkeit mit gleichzeitig definierter und geringer Latenz. Hierzu wird eine miteinander verzahnte Hard- und Softwarearchitektur entwickelt, die zum einen den Fokus auf sensornahe Datenfusion, Datenreduktion und Datenauswertung legt und zum anderen fehlerhafte Sensoren durch das Interpretieren von Anomalien erkennt. So werden z.B. neben üblichen Funktionen, wie etwa der digitalen Erfassung von Strom, Position, Vibration, Akustik, Druck, Kraft und Temperatur, vor allem Funktionalitäten für maschinelles Lernen (ML) bereitgestellt, wodurch eine dezentrale Datenverarbeitung und -reduktion ermöglicht wird.

Das Interface ist insbesondere in der Lage, energieeffizient Merkmale auch in hochfrequenten Sensorsignalen zu erkennen und diese entweder auf Steuerungsebene als Basis für die Sensordatenfusion zur Verfügung zu stellen oder direkt für die Klassifikation, das Clustering oder die Anomaliedetektion zu nutzen.

Die Nutzung von industriell üblichen Schnittstellen und Netzwerken wird durch die sensornahe Gewinnung aggregierter Merkmale aus dem Datenstrom ermöglicht. Dadurch können die Industriepartner den Funktionsumfang ihrer Anlagen, ohne zusätzliche Infrastrukturkosten, erhöhen. Gleichzeitig können diese Merkmale auf höheren Ebenen der Prozesssteuerung bzw. der ERP-Software mittels komplexeren KI- und ML-Methoden genutzt werden, um den Anlagenzustand und die Produktqualität zu erfassen sowie Trends zu verfolgen. Diese erweiterte Datenauswertung kann genutzt werden, um die Betriebskosten der Anlage zu senken. Hierbei ist die Hardware nicht an spezielle Anwendungsfälle angepasst und kann somit automatisiert an neue Anwendungsfälle angelernt werden.

Das könnte Sie auch Interessieren

Bild: Smartblick
Bild: Smartblick
Software für KI-gestützte Maschinendatenanalyse

Software für KI-gestützte Maschinendatenanalyse

Mit einer neuen Software für die KI-gestützte Maschinendatenanalyse kann die unkomplizierte Produktionsplanung und -optimierung auch für kleine und mittlere Fertigungsunternehmen Realität werden. Agile Prozesse sind für die Verantwortlichen auf dem Shopfloor mittlerweile entscheidend für die Produktivität. Die Corona-Pandemie und der Krieg in der Ukraine zeigen deutlich, wie schnell sich ein Produktionsunternehmen auf neue Rahmenbedingungen einstellen muss. Nahezu unerlässlich dafür sind Software-Tools, die dabei unterstützen, den Ist-Zustand der Maschinen auszuwerten, in Echtzeit Störungen in der Produktion aufzuspüren sowie Potentiale für Optimierungen zu erkennen. Um informierte strategische Entscheidungen zu treffen, müssen alle zur Verfügung stehenden Daten des Maschinenparks und der Prozesse ausgewertet werden.

Bild: ebm-papst Mulfingen GmbH & Co. KG
Bild: ebm-papst Mulfingen GmbH & Co. KG
Retrofit-Event rund um effiziente Gebäudetechnik

Retrofit-Event rund um effiziente Gebäudetechnik

Das RLT-Event Retrofitvesper von EBM-papst geht in eine neue, vierte Runde. Passend zur Nummerierung 4.0 nehmen die Experten das Publikum mit in die Welt der fortschrittlichen Gebäudetechnik und -automation, die effizient für beste Raumluftqualität sorgt und sofort alle wichtigen Daten und Energiebilanzen darstellt. Das Event findet am 30. September 2022 auf der digitalen Eventplattform von EBM-papst statt.

Bild: Indu-Sol GmbH
Bild: Indu-Sol GmbH
Verschleiß dauerhaft überwachen, Schäden frühzeitig erkennen

Verschleiß dauerhaft überwachen, Schäden frühzeitig erkennen

Nicht nur Motoren und Pumpen sind in Produktionsanlagen dem Verschleiß unterworfen, sondern auch die Datenleitungen der Maschinen- und Anlagennetzwerke einschließlich der Kabel und Stecker. Dauernde Wechselbiegebeanspruchungen, Erschütterungen sowie Oxidation und Korrosion lassen der Alterung und dem Verschleiß ungehinderten Lauf. Doch während der mechanische Verschleiß mit den Sinnesorganen analog wahrnehmbar ist, macht sich der Verschleiß einer Datenleitung erst im Extremfall bemerkbar: dem Ausfall. Um dem entgegenzuwirken, sind intelligente managed Switches vonnöten, mit denen der physikalische Zustand der Datenleitung digitalisiert und somit sichtbar wird.