SBB setzt KI zur Verbesserung der Schienenwartung ein
Das ETH-Spin-Off LatticeFlow arbeitet mit der SBB, Siemens und der ETH zusammen, um eine sichere, effiziente und kostengünstige KI-basierte Bahnwartung zu ermöglichen.
Bild: SBB

Die Schweizerischen Bundesbahnen (SBB) verfügen über eines der dichtesten Schienennetze der Welt. Es erstreckt sich über 7.500km Gleise mit 300 Tunneln und transportiert täglich über 1,25 Millionen Fahrgäste. Die intensive Nutzung erfordert hohe Investitionen in die betriebliche Instandhaltung, um die Sicherheit der Gleise zu gewährleisten.

Die Gleiswartung erfolgt traditionell durch eine manuelle Inspektion der Schienen, eine Aufgabe, die viel menschliche Arbeitskraft erfordert und nötig macht, dass Menschen in gefährlichen und manchmal schwer zugänglichen Umgebungen arbeiten. Die SBB beabsichtigen darum, die Schienenwartung zu verbessern, indem sie die Inspektionen mithilfe der neuesten Generation von KI automatisieren. Ein spezieller Zug, der mit Kameras ausgestattet ist, soll Bilddaten der Schienen sammeln, die dann von der KI verarbeitet werden, um eventuelle Schienenfehler zu identifizieren.

Die Streckeninspektion ist jedoch eine sicherheitskritische Aufgabe. Wie kann sichergestellt werden, dass das neue KI-basierte System zuverlässig ist? KI-Modelle funktionieren oft gut in Laborumgebungen, schneiden aber schlecht ab, wenn sie in der komplexen Realität eingesetzt werden. Bevor die SBB die Inspektionsaufgabe an die ‚Augen‘ des neuen KI-Systems übergibt, muss sie sicherstellen, dass die trainierten KI-Modelle Bahndefekte unter verschiedenen Umgebungsbedingungen korrekt erkennen. Linsenkratzer, Regentropfen oder Schnee auf den Schienen und andere Variablen, die die Bildqualität beeinflussen, dürfen die Zuverlässigkeit des KI-Systems nicht untergraben.

Mit diesem Ziel hat SBB eine Partnerschaft mit LatticeFlow, Forschern des AI Centers an der ETH und Siemens geschlossen. In einem ersten Schritt werden die Teams die Zuverlässigkeit der KI-Modelle der SBB mithilfe der LatticeFlow-Plattform für vertrauenswürdige KI bewerten. Die Modelle werden dann bei Bedarf verbessert. Parallel zur technischen Arbeit werden die Partner aktuelle Sicherheitsstandards und deren Anwendung auf den Bahnbereich analysieren. Das Ziel der Zusammenarbeit ist der Nachweis, dass die KI-Modelle zuverlässig sind und sicher in der Produktion eingesetzt werden können.

LatticeFlow AG
http://www.atticeflow.ai

Das könnte Sie auch Interessieren

Produktion für mehrere Tage lahmgelegt

Produktion für mehrere Tage lahmgelegt

Bild: Trend Micro Deutschland GmbH Im Auftrag von Trend Micro hat das unabhängige Marktforschungsinstitut Vanson Bourne eine Online-Umfrage unter 500 IT- und OT-Fachleuten in den USA, Deutschland und Japan durchgeführt. Daraus ging hervor, dass mehr als drei Fünftel...

Bachmann übernimmt Condition-Monitoring-Startup

Bachmann übernimmt Condition-Monitoring-Startup

Bild: Bachmann Electronic GmbH "Unsere Organisationen passen gut zusammen, wenn es darum geht, die Grenzen der Zustandsüberwachung zu verschieben. Diese Partnerschaft ist eine spannende Entwicklung, unsere Anwendungen mit neuen Verfahren wie die der KI und des Machine...

Zusammenarbeit: Open Robotics und Canonical

Canonical und Open Robotics haben eine Partnerschaft für die erweiterte Sicherheitswartung (ESM) für das Robot Operating System (ROS) und den Enterprise-Support als Teil von Ubuntu Advantage, dem Servicepaket von Canonical für Ubuntu, geschlossen.

Secure Remote Service mit neuen Funktionen

Zum zehnjährigen Bestehen des Fernwartungssystems mGuard Secure Remote Service bringt Phoenix Contact mit der Version 2.11 Erweiterungen und neue Funktionen des Systems auf den Markt.

Industriesoftware automatisiert Datenanalyse und Prozessüberwachung

Symate, Spezialist für die Verbesserung von Fertigungsprozessen mit den Methoden der künstlichen Intelligenz (KI), unterstützt die Fachhochschule Bielefeld. Das Center for Applied Data Science (CfADS) an der FH hat die intelligente Industriesoftware Detact als festes Tool in ihren Software-Stack übernommen. Auf dieser Basis können die Forscher den Produktionsablauf in einer digitalen und weitgehend automatisierten Fertigung nun deutlich leichter und schneller simulieren sowie große Datenmengen (Big Data) systematisch analysieren.